Morera theorems via microlocal analysis

被引:2
|
作者
Globevnik, J
Quinto, ET
机构
[1] UNIV LJUBLJANA,DEPT MATH,LJUBLJANA,SLOVENIA
[2] TUFTS UNIV,DEPT MATH,MEDFORD,MA 02155
关键词
Morera theorem; Radon transform; support theorem; microlocal analysis; Fourier integral operators;
D O I
10.1007/BF02921565
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Morera theorems for curves in the plane using microlocal analysis. The key is that microlocal smoothness of functions is reflected by smoothness of their Morera integrals on curves-their Radon transforms. Parallel support theorems for the associated Radon transforms follow from our arguments by a simple correspondence.
引用
收藏
页码:19 / 30
页数:12
相关论文
共 50 条
  • [21] DYNAMICAL ZETA FUNCTIONS FOR ANOSOV FLOWS VIA MICROLOCAL ANALYSIS
    Dyatlov, Semyon
    Zworski, Maciej
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2016, 49 (03): : 543 - 577
  • [22] Morera type problems in Clifford analysis
    Olea, EM
    REVISTA MATEMATICA IBEROAMERICANA, 2001, 17 (03) : 559 - 585
  • [23] Microlocal analysis and applications
    Cordero, E
    Nicola, F
    Rodino, L
    ADVANCES IN PSEUDO-DIFFERENTIAL OPERATORS, 2004, 155 : 1 - 17
  • [24] RELATIVITY AND MICROLOCAL ANALYSIS
    UNTERBERGER, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (03): : 111 - 114
  • [25] A microlocal analysis of migration
    ten Kroode, APE
    Smit, DJ
    Verdel, AR
    WAVE MOTION, 1998, 28 (02) : 149 - 172
  • [26] RESONANCES AND MICROLOCAL ANALYSIS
    SJOSTRAND, J
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1987, 31 (05) : 733 - 737
  • [28] FOURIER TRANSFORMATION ON SL2(R) AND MORERA-TYPE THEOREMS
    AGRANOVSKII, ML
    DOKLADY AKADEMII NAUK SSSR, 1978, 243 (06): : 1353 - 1356
  • [29] Microlocal analysis and multiwavelets
    Ashino, R
    Heil, C
    Nagase, M
    Vaillancourt, R
    GEOMETRY ANALYSIS AND APPLICATIONS, 2001, : 293 - 302
  • [30] BOUNDARY MORERA THEOREMS FOR HOLOMORPHIC-FUNCTIONS OF SEVERAL COMPLEX-VARIABLES
    GLOBEVNIK, J
    STOUT, EL
    DUKE MATHEMATICAL JOURNAL, 1991, 64 (03) : 571 - 615