Is supersymmetric quantum mechanics compatible with duality?

被引:4
|
作者
Capdequi-Peyranère, M [1 ]
机构
[1] Univ Montpellier 2, Lab Phys Math & Theor, CNRS UMR 5825, F-34095 Montpellier 5, France
关键词
D O I
10.1142/S0217732399002790
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Supersymmetry applied to quantum mechanics has given new insights in various topics of theoretical physics like analytically solvable potentials, WKB approximation or KdV solitons. Duality plays a central role in many supersymmetric theories such as Yang-Mills theories or strings models. We investigate the possible existence of some duality within supersymmetric quantum mechanics.
引用
收藏
页码:2657 / 2666
页数:10
相关论文
共 50 条
  • [21] Supersymmetric relativistic quantum mechanics
    Habara, Y
    Nielsen, HB
    Ninomiya, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (06): : 1333 - 1340
  • [22] Supersymmetric Quantum Mechanics and Paraquantization
    Morchedi, O.
    Mebarki, N.
    8TH INTERNATIONAL CONFERENCE ON PROGRESS IN THEORETICAL PHYSICS (ICPTP 2011), 2012, 1444 : 304 - 309
  • [23] Progress in supersymmetric quantum mechanics
    Aref'eva, I
    Fernández, DJ
    Hussin, V
    Negro, J
    Nieto, LM
    Samsonov, BF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (43):
  • [24] Duality and scaling in quantum mechanics
    Datta, DP
    PHYSICS LETTERS A, 1997, 233 (4-6) : 274 - 280
  • [25] Duality and the geometry of quantum mechanics
    Isidro, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (14): : 3305 - 3316
  • [26] Duality, spacetime and quantum mechanics
    Witten, E
    PHYSICS TODAY, 1997, 50 (05) : 28 - 33
  • [27] Can quantum mechanics and supersymmetric quantum mechanics be the multidimensional Ermakov theories?
    Kaushal, RS
    Parashar, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (04): : 889 - 893
  • [28] 40 years of supersymmetric quantum mechanics
    Junker, Georg
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (02)
  • [29] Supersymmetric Quantum Mechanics and Solvable Models
    Bougie, Jonathan
    Gangopadhyaya, Asim
    Mallow, Jeffry
    Rasinariu, Constantin
    SYMMETRY-BASEL, 2012, 4 (03): : 452 - 473
  • [30] Painleve Equations and Supersymmetric Quantum mechanics
    Fernandez, David J. C.
    GEOMETRIC METHODS IN PHYSICS, 2016, : 213 - 231