Tailoring non-fullerene acceptors using selenium-incorporated heterocycles for organic solar cells with over 16% efficiency

被引:94
|
作者
Yu, Han [1 ]
Qi, Zhenyu [1 ]
Zhang, Jianquan [1 ,2 ]
Wang, Zhen [3 ]
Sun, Rui [4 ]
Chang, Yuan [1 ]
Sun, Huiliang [2 ]
Zhou, Wentao [1 ]
Min, Jie [4 ]
Ade, Harald [3 ]
Yan, He [1 ,2 ,5 ]
机构
[1] Hong Kong Univ Sci & Technol, Chinese Natl Engn Res Ctr Tissue Restorat & Recon, Hong Kong Branch, Dept Chem,Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Shenzhen Res Inst, 9 Yuexing 1st RD,Hitech Pk, Shenzhen 518057, Peoples R China
[3] North Carolina State Univ, Dept Phys, Organ & Carbon Elect Labs ORaCEL, Raleigh, NC 27695 USA
[4] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Peoples R China
[5] South China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTOVOLTAIC PERFORMANCE; END-GROUPS; BANDGAP; SELENOPHENE; ENABLES; MISCIBILITY; POLYMERS; STRATEGY;
D O I
10.1039/d0ta06658c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Small molecular acceptors (SMAs) have gained extensive research attention as they offer many attractive features and enable highly efficient organic solar cells (OSCs) that cannot be achieved using fullerene acceptors. Recently, a new SMA named Y6 was reported, yielding high-performance OSCs with an efficiency of 15.7%. This report has inspired the OSC community to study the structure-property relationship and further modify this important class of materials. In this work, we used the selenium (Se) substitution strategy and developed two new Y6-type SMAs to study the effect of Se atoms on materials properties and device performances. It is found that the introduction of Se atoms can red-shift the absorption spectra and enhance the aggregation of the resulting SMAs. Interestingly, the variations in the substitution positions of Se atoms induce different intramolecular charge transfer within the SMAs. Se substitution at the benzothiadiazole ring is more effective than that at the thienothiophene rings, leading to the increased short-circuit current density (J(SC)) and higher efficiencies of over 16%. This contribution suggests that appropriate Se substitution is a promising method for optimizing the absorption and aggregation of Y6-type SMAs, thus enhancing their OSC performances.
引用
收藏
页码:23756 / 23765
页数:10
相关论文
共 50 条
  • [41] Central core regulation by methoxy in quinoxaline-based non-fullerene acceptors for over 19 % efficiency organic solar cells
    Bi, Huijuan
    Qiu, Dingding
    Zhang, Hao
    Wang, Caixuan
    Wu, Mengying
    Ran, Xinya
    Zhang, Jianqi
    Wang, Yuheng
    Tang, Ailing
    Miao, Xinyang
    Wei, Zhixiang
    Lu, Kun
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [42] Recent Advances in Selenium-Containing Non-fullerene Acceptors for High-Performance Organic Solar Cells
    Lyu, Li
    Zhang, Zaixin
    Lyu, Rongna
    Zhu, Shenbo
    Cui, Yongjie
    Hu, Huawei
    CHEMPHOTOCHEM, 2024, 8 (06)
  • [43] Improving the Efficiency of Organic Solar Cells via the Molecular Engineering of Simple Fused Non-Fullerene Acceptors
    Papkovskaya, Elizaveta D.
    Wan, Ji
    Balakirev, Dmitry O.
    Dyadishchev, Ivan V.
    Bakirov, Artem V.
    Luponosov, Yuriy N.
    Min, Jie
    Ponomarenko, Sergey A.
    ENERGIES, 2023, 16 (08)
  • [44] Isatin-derived non-fullerene acceptors for efficient organic solar cells
    Yousaf, Irfan
    Khera, Rasheed Ahmad
    Iqbal, Javed
    Gul, Sehrish
    Jabeen, Sobia
    Ihsan, Anaum
    Ayub, Khurshid
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 121
  • [45] Star-Shaped Non-Fullerene Small Acceptors for Organic Solar Cells
    Pan, Yi-Qi
    Sun, Guang-Yan
    CHEMSUSCHEM, 2019, 12 (20) : 4570 - 4600
  • [46] Non-fullerene Acceptors with Germanium as Bridge Atom and Their Applications in Organic Solar Cells
    Zhang Yi
    Shan Tong
    Wang Yan
    Zhong Hongliang
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2023, 44 (07):
  • [47] Simple non-fullerene electron acceptors with unfused core for organic solar cells
    Li, Yao
    Xu, Yunhua
    Yang, Fan
    Jiang, Xudong
    Li, Cheng
    You, Shengyong
    Li, Weiwei
    CHINESE CHEMICAL LETTERS, 2019, 30 (01) : 222 - 224
  • [48] Non-fullerene acceptors with thiazole n-bridge for organic solar cells
    Jia, Yixiao
    Jiang, Xin
    Wang, Kaifeng
    Chen, Xianneng
    Fang, Ruixiang
    Miao, Chunyang
    Tao, Youtian
    Zhang, Shiming
    MATERIALS LETTERS, 2024, 355
  • [49] Simple non-fullerene electron acceptors with unfused core for organic solar cells
    Yao Li
    Yunhua Xu
    Fan Yang
    Xudong Jiang
    Cheng Li
    Shengyong You
    Weiwei Li
    ChineseChemicalLetters, 2019, 30 (01) : 222 - 224
  • [50] Stability: next focus in organic solar cells based on non-fullerene acceptors
    Li, Yawen
    Li, Tengfei
    Lin, Yuze
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (07) : 2907 - 2930