A simple spatial extension to the extended connectivity interaction features for binding affinity prediction

被引:3
|
作者
Orhobor, Oghenejokpeme I. [1 ]
Rehim, Abbi Abdel [1 ]
Lou, Hang [3 ]
Ni, Hao [3 ,4 ]
King, Ross D. [1 ,2 ,4 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge, England
[2] Chalmers Univ Technol, Dept Biol & Biol Engn, Gothenburg, Sweden
[3] UCL, Dept Math, London, England
[4] Alan Turing Inst, London, England
来源
ROYAL SOCIETY OPEN SCIENCE | 2022年 / 9卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
machine learning; protein binding affinity prediction; scoring functions;
D O I
10.1098/rsos.211745
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The representation of the protein-ligand complexes used in building machine learning models play an important role in the accuracy of binding affinity prediction. The Extended Connectivity Interaction Features (ECIF) is one such representation. We report that (i) including the discretized distances between protein-ligand atom pairs in the ECIF scheme improves predictive accuracy, and (ii) in an evaluation using gradient boosted trees, we found that the resampling method used in selecting the best hyperparameters has a strong effect on predictive performance, especially for benchmarking purposes.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Binding Affinity Prediction and Pesticide Screening against Phytophthora sojae Using a Heterogeneous Interaction Graph Attention Network-Based Model
    Dai, Youxu
    Han, Aiping
    Ma, Huijun
    Jin, Xuebo
    Zhu, Danyang
    Sun, Shiguang
    Li, Ruiheng
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, 65 (05) : 2368 - 2384
  • [42] Comprehensive and Automated Linear Interaction Energy Based Binding-Affinity Prediction for Multifarious Cytochrome P450 Aromatase Inhibitors
    van Dijk, Marc
    ter Laakt, Antonius M.
    Wichard, Jorg D.
    Capoferri, Luigi
    Vermeulen, Nico P. E.
    Geerke, Daan P.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (09) : 2294 - 2308
  • [43] Applying linear interaction energy method for binding affinity calculations of podophyllotoxin analogues with tubulin using continuum solvent model and prediction of cytotoxic activity
    Alam, Md. Afroz
    Naik, Pradeep Kumar
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2009, 27 (08): : 930 - 943
  • [44] PIGNet2: a versatile deep learning-based protein-ligand interaction prediction model for binding affinity scoring and virtual screening
    Moon, Seokhyun
    Hwang, Sang-Yeon
    Lim, Jaechang
    Kim, Woo Youn
    DIGITAL DISCOVERY, 2024, 3 (02): : 287 - 299
  • [45] Prediction of Binding Energy of Keap1 Interaction Motifs in the Nrf2 Antioxidant Pathway and Design of Potential High-Affinity Peptides
    Karttunen, Mikko
    Choy, Wing-Yiu
    Cino, Elio A.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (22): : 5851 - 5859
  • [46] Structure-Based Prediction of Domain-Peptide Binding Affinity by Dissecting Residue Interaction Profile at Complex Interface: A Case Study on CAL PDZ Domain
    Jin, Rongzhong
    Ma, Yili
    Qin, Lifeng
    Ni, Zhong
    PROTEIN AND PEPTIDE LETTERS, 2013, 20 (09): : 1018 - 1028
  • [47] RF-HYB: Prediction of DNA-Binding Residues and Interaction of Drug in Proteins Using Random-Forest Model by Hybrid Features
    Shahna, E.
    George, Joby
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 1319 - 1326
  • [48] CSConv2d: A 2-D Structural Convolution Neural Network with a Channel and Spatial Attention Mechanism for Protein-Ligand Binding Affinity Prediction
    Wang, Xun
    Liu, Dayan
    Zhu, Jinfu
    Rodriguez-Paton, Alfonso
    Song, Tao
    BIOMOLECULES, 2021, 11 (05)
  • [49] ET-score: Improving Protein-ligand Binding Affinity Prediction Based on Distance-weighted Interatomic Contact Features Using Extremely Randomized Trees Algorithm
    Rayka, Milad
    Karimi-Jafari, Mohammad Hossein
    Firouzi, Rohoullah
    MOLECULAR INFORMATICS, 2021, 40 (08)
  • [50] 3-Layer-based analysis of peptide-MHC interaction: In silico prediction, peptide binding affinity and T cell activation in a relevant allergen-specific model
    Knapp, Bernhard
    Omasits, Ulrich
    Bohle, Barbara
    Maillere, Bernard
    Ebner, Christof
    Schreiner, Wolfgang
    Jahn-Schmid, Beatrice
    MOLECULAR IMMUNOLOGY, 2009, 46 (8-9) : 1839 - 1844