A simple spatial extension to the extended connectivity interaction features for binding affinity prediction

被引:3
|
作者
Orhobor, Oghenejokpeme I. [1 ]
Rehim, Abbi Abdel [1 ]
Lou, Hang [3 ]
Ni, Hao [3 ,4 ]
King, Ross D. [1 ,2 ,4 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge, England
[2] Chalmers Univ Technol, Dept Biol & Biol Engn, Gothenburg, Sweden
[3] UCL, Dept Math, London, England
[4] Alan Turing Inst, London, England
来源
ROYAL SOCIETY OPEN SCIENCE | 2022年 / 9卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
machine learning; protein binding affinity prediction; scoring functions;
D O I
10.1098/rsos.211745
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The representation of the protein-ligand complexes used in building machine learning models play an important role in the accuracy of binding affinity prediction. The Extended Connectivity Interaction Features (ECIF) is one such representation. We report that (i) including the discretized distances between protein-ligand atom pairs in the ECIF scheme improves predictive accuracy, and (ii) in an evaluation using gradient boosted trees, we found that the resampling method used in selecting the best hyperparameters has a strong effect on predictive performance, especially for benchmarking purposes.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Extended connectivity interaction features: improving binding affinity prediction through chemical description
    Sanchez-Cruz, Norberto
    Medina-Franco, Jose L.
    Mestres, Jordi
    Barril, Xavier
    BIOINFORMATICS, 2021, 37 (10) : 1376 - 1382
  • [2] Multi-shelled ECIF: improved extended connectivity interaction features for accurate binding affinity prediction
    Shiota, Koji
    Akutsu, Tatsuya
    BIOINFORMATICS ADVANCES, 2023, 3 (01):
  • [3] Geometric graph learning with extended atom-types features for protein-ligand binding affinity prediction
    Rana, Md Masud
    Nguyen, Duc Duy
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [4] Ligand binding affinity prediction by linear interaction energy methods
    Tomas Hansson
    John Marelius
    Johan Åqvist
    Journal of Computer-Aided Molecular Design, 1998, 12 : 27 - 35
  • [5] Ligand binding affinity prediction by linear interaction energy methods
    Hansson, T
    Marelius, J
    Aqvist, J
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 1998, 12 (01) : 27 - 35
  • [6] ImageDTA: A Simple Model for Drug-Target Binding Affinity Prediction
    Han, Li
    Kang, Ling
    Guo, Quan
    ACS OMEGA, 2024, 9 (26): : 28485 - 28493
  • [7] Improving binding affinity prediction by emphasizing local features of drug and protein
    Choi, Daejin
    Park, Sangjun
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2025, 115
  • [8] Protein Binding Affinity Prediction Using Support Vector Regression and Interfecial Features
    Yaseen, Adiba
    Abbasi, Wajid Arshad
    Minhas, Fayyaz ul Amir Afsar
    PROCEEDINGS OF 2018 15TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2018, : 194 - 198
  • [9] Prediction of protein-carbohydrate complex binding affinity using structural features
    Shanmugam, N. R. Siva
    Blessy, J. Jino
    Veluraja, K.
    Gromiha, M. Michael
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [10] Development of a protein-ligand extended connectivity (PLEC) fingerprint and its application for binding affinity predictions
    Wojcikowski, Maciej
    Kukielka, Michal
    Stepniewska-Dziubinska, Marta M.
    Siedlecki, Pawel
    BIOINFORMATICS, 2019, 35 (08) : 1334 - 1341