A New Preconditioner for Toeplitz Matrices

被引:3
|
作者
Dominguez-Jimenez, Maria Elena [1 ]
Ferreira, Paulo J. S. G. [2 ]
机构
[1] Univ Politecn Madrid, Dept Matemat Aplicada, ETSII, GI TACA, E-28006 Madrid, Spain
[2] Univ Aveiro, Signal Proc Lab, DETI IEETA, P-3810193 Aveiro, Portugal
关键词
PCG; preconditioners; Toeplitz matrices; CIRCULANT PRECONDITIONERS;
D O I
10.1109/LSP.2009.2024735
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we introduce and analyze a new preconditioner for Toeplitz matrices that exhibits excellent spectral properties: the eigenvalues of the preconditioned matrix are highly clustered around the unity. As a result, it yields very rapid convergence when used to solve Toeplitz equations via the preconditioned conjugate gradient method. The new preconditioner can be regarded as a refinement of preconditioners built by embedding the Toeplitz matrix in a positive definite circulant. Necessary and sufficient conditions that ensure that the positive definite embedding is possible are given.
引用
收藏
页码:758 / 761
页数:4
相关论文
共 50 条
  • [41] New Square-Root Factorization of Inverse Toeplitz Matrices
    Wahlberg, Bo
    Stoica, Petre
    IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (02) : 137 - 140
  • [42] NONSYMMETRIC TOEPLITZ MATRICES THAT COMMUTE WITH TRIADIAGONAL MATRICES
    IKRAMOV, KD
    MATHEMATICAL NOTES, 1994, 55 (5-6) : 483 - 490
  • [43] Minimum eigenvalue of a Toeplitz matrix and a product of Toeplitz matrices
    Rambour, Philippe
    ANNALES MATHEMATIQUES DU QUEBEC, 2015, 39 (01): : 25 - 48
  • [44] High performance algorithms for Toeplitz and block Toeplitz matrices
    Gallivan, KA
    Thirumalai, S
    VanDooren, P
    Vermaut, V
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 243 : 343 - 388
  • [45] A preconditioner for symmetric saddle point matrices
    Wang, Chao
    2017 2ND INTERNATIONAL SEMINAR ON ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2017, 231
  • [46] NONCIRCULANT TOEPLITZ MATRICES ALL OF WHOSE POWERS ARE TOEPLITZ
    Griffin, Kent
    Stuart, Jeffrey L.
    Tsatsomeros, Michael J.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 1185 - 1193
  • [47] Toeplitz matrices are unitarily similar to symmetric matrices
    Chien, Mao-Ting
    Liu, Jianzhen
    Nakazato, Hiroshi
    Tam, Tin-Yau
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (10): : 2131 - 2144
  • [48] High performance algorithms for Toeplitz and block Toeplitz matrices
    Coordinated Science Laboratory, Univ. Illinois at Urbana-Champaign, Urbana, IL, United States
    不详
    Linear Algebra and Its Applications, 241-243 : 343 - 388
  • [49] Infinite limitedly-toeplitz extensions of Toeplitz matrices
    Il'in S.N.
    Journal of Mathematical Sciences, 2006, 132 (2) : 160 - 165
  • [50] Noncirculant Toeplitz matrices all of whose powers are Toeplitz
    Kent Griffin
    Jeffrey L. Stuart
    Michael J. Tsatsomeros
    Czechoslovak Mathematical Journal, 2008, 58 : 1185 - 1193