LPI Radar Waveform Recognition Based on Deep Convolutional Neural Network Transfer Learning

被引:48
|
作者
Guo, Qiang [1 ]
Yu, Xin [1 ]
Ruan, Guoqing [2 ]
机构
[1] Harbin Engn Univ, Coll Informat & Telecommun, Harbin 150001, Heilongjiang, Peoples R China
[2] China Elect Technol Grp Corp, Res Inst 28, Key Lab Informat Syst Engn, Nanjing 210014, Jiangsu, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 04期
关键词
Low Probability of Intercept; CWD time-frequency analysis; Inception-v3; ResNet-152; transfer learning; GA ALGORITHM; CLASSIFICATION; SIGNALS;
D O I
10.3390/sym11040540
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Low Probability of Intercept (LPI) radar waveform recognition is not only an important branch of the electronic reconnaissance field, but also an important means to obtain non-cooperative radar information. To solve the problems of LPI radar waveform recognition rate, difficult feature extraction and large number of samples needed, an automatic classification and recognition system based on Choi-Williams distribution (CWD) and depth convolution neural network migration learning is proposed in this paper. First, the system performs CWD time-frequency transform on the LPI radar waveform to obtain a 2-D time-frequency image. Then the system preprocesses the original time-frequency image. In addition, then the system sends the pre-processed image to the pre-training model (Inception-v3 or ResNet-152) of the deep convolution network for feature extraction. Finally, the extracted features are sent to a Support Vector Machine (SVM) classifier to realize offline training and online recognition of radar waveforms. The simulation results show that the overall recognition rate of the eight LPI radar signals (LFM, BPSK, Costas, Frank, and T1-T4) of the ResNet-152-SVM system reaches 97.8%, and the overall recognition rate of the Inception-v3-SVM system reaches 96.2% when the SNR is -2 dB.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Radar Gesture Recognition Based on Lightweight Convolutional Neural Network
    Dong, Yaoyao
    Qu, Wei
    Wang, Pengda
    Jiang, Haohao
    Gao, Tianhao
    Shu, Yanhe
    SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166
  • [42] A Radar Jamming Recognition Algorithm Based on Convolutional Neural Network
    Liu G.
    Nie X.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2021, 41 (09): : 990 - 998
  • [43] Radar signal recognition based on triplet convolutional neural network
    Liu, Lutao
    Li, Xinyu
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2021, 2021 (01)
  • [44] Radar signal recognition based on triplet convolutional neural network
    Lutao Liu
    Xinyu Li
    EURASIP Journal on Advances in Signal Processing, 2021
  • [45] Open-set recognition of LPI radar signals based on a slightly convolutional neural network and support vector data description
    Liu, Zhilin
    He, Tianzhang
    Wu, Tong
    Wang, Jindong
    Xia, Bin
    Jiang, Liangjian
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2024, 37 (02)
  • [46] Plant Taxonomy In Hainan Based On Deep Convolutional Neural Network And Transfer Learning
    Liu, Wei
    Feng, Wenlong
    Huang, Mengxing
    Han, Guilai
    Lin, Jialun
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1462 - 1467
  • [47] Crop pest classification based on deep convolutional neural network and transfer learning
    Thenmozhi, K.
    Reddy, U. Srinivasulu
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 164
  • [48] Image Splicing Detection based on Deep Convolutional Neural Network and Transfer Learning
    Das, Debjit
    Naskar, Ruchira
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [49] Human Face Expression Recognition Based On Deep Learning-Deep Convolutional Neural Network
    Liu, Lingling
    2019 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2019, : 221 - 224
  • [50] Radar Emitter Identification Based on Deep Convolutional Neural Network
    Kong, Mingxin
    Zhang, Jing
    Liu, Weifeng
    Zhang, Guilin
    2018 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2018, : 309 - 314