Prediction model of energy market by long short term memory with random system and complexity evaluation

被引:23
|
作者
Yang, Yu [1 ]
Wang, Jun [1 ]
Wang, Bin [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Sci, Inst Financial Math & Financial Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Prediction neural network model; Long short term memory; Multiscale cross sample entropy; Random time effective function; Energy market; ARTIFICIAL NEURAL-NETWORKS; OIL PRICE SHOCKS; TIME-SERIES; ALGORITHM; DEMAND;
D O I
10.1016/j.asoc.2020.106579
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the frequent and violent fluctuation of energy futures prices, the investment risk of energy investors is increased. Forecasting energy futures prices has progressively become the focus of research. However, traditional prediction model only conducts forecasting based on historical data without considering the behavior of the market, resulting in poor accuracy. In this paper, the random time effective function that considers the timeliness of historical data and the random change of market environment is applied to the long short term memory model to establish a novel prediction model, which is denoted by long short term memory with random time effective function model (LSTMRT). LSTM model has the characteristics of selective memory and the internal influence of time series, which is very suitable for the prediction of price time series. Random time effective function can give different weights to historical data. Furthermore, using multiscale cross-sample entropy (MCSE) as an innovative method to reveal the performance of prediction. Finally, comparing with other models selected in this paper, error evaluations and statistical comparisons are utilized to demonstrate the advantages and superiority of the proposed model. LSTMRT model has the effect of random movement and keeps the trend fluctuation of the original nonlinear data, which makes the prediction more accurate and more credible. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Long Short-Term Memory Networks with Multiple Variables for Stock Market Prediction
    Gao, Fei
    Zhang, Jiangshe
    Zhang, Chunxia
    Xu, Shuang
    Ma, Cong
    NEURAL PROCESSING LETTERS, 2023, 55 (04) : 4211 - 4229
  • [12] Stock Market Prediction-by-Prediction Based on Autoencoder Long Short-Term Memory Networks
    Faraz, Mehrnaz
    Khaloozadeh, Hamid
    Abbasi, Milad
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 1483 - 1487
  • [13] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Peng Chen
    Rong Wang
    Yibin Yao
    Hao Chen
    Zhihao Wang
    Zhiyuan An
    Journal of Geodesy, 2023, 97
  • [14] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Chen, Peng
    Wang, Rong
    Yao, Yibin
    Chen, Hao
    Wang, Zhihao
    An, Zhiyuan
    JOURNAL OF GEODESY, 2023, 97 (05)
  • [15] Auto-Evaluation Model for the Prediction of Building Energy Consumption That Combines Modified Kalman Filtering and Long Short-Term Memory
    Yang, Fan
    Mao, Qian
    SUSTAINABILITY, 2023, 15 (22)
  • [16] Stock Market Prediction Based on Big Data Using Deep Reinforcement Long Short-Term Memory Model
    Ishwarappa, K.
    Anuradha, J.
    INTERNATIONAL JOURNAL OF E-COLLABORATION, 2022, 18 (02)
  • [17] VERY SHORT-TERM ENERGY PREDICTION FOR A DISTRIBUTED PV SYSTEM USING LONG SHORT-TERM MEMORY ARTIFICIAL INTELLIGENT METHOD
    使用長短時記憶人工智慧方法預估極短時分散式太陽能系統發電成效
    Chao, R.-M. (rmchao@mail.ncku.edu.tw), 1600, Taiwan Society of Naval Architects and Marine Engineers (39): : 197 - 204
  • [18] Simplified long short-term memory model for robust and fast prediction
    Liu, Yong
    Hao, Xin
    Zhang, Biling
    Zhang, Yuyan
    PATTERN RECOGNITION LETTERS, 2020, 136 (136) : 81 - 86
  • [19] An Improved Long Short-Term Memory Model for Dam Displacement Prediction
    Zhang, Jun
    Cao, Xiyao
    Xie, Jiemin
    Kou, Pangao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [20] A Long Short-Term Memory Model for Global Rapid Intensification Prediction
    Yang, Qidong
    Lee, Chia-Ying
    Tippett, Michael K.
    WEATHER AND FORECASTING, 2020, 35 (04) : 1203 - 1220