Stochastic model for ultraslow diffusion

被引:96
|
作者
Meerschaert, Mark M.
Scheffler, Hans-Peter
机构
[1] Univ Otago, Dept Math & Stat, Dunedin 9001, New Zealand
[2] Univ Siegen, Dept Math, Siegen, Germany
基金
美国国家科学基金会;
关键词
continuous time random walk; slowly varying tails; anomalous diffusion; stable subordinator;
D O I
10.1016/j.spa.2006.01.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ultraslow diffusion is a physical model in which a plume of diffusing particles spreads at a logarithmic rate. Governing partial differential equations for ultraslow diffusion involve fractional time derivatives whose order is distributed over the interval from zero to one. This paper develops the stochastic foundations for ultraslow diffusion based on random walks with a random waiting time between jumps whose probability tail falls off at a logarithmic rate. Scaling limits of these random walks are subordinated random processes whose density functions solve the ultraslow diffusion equation. Along the way, we also show that the density function of any stable subordinator solves an integral equation (5.15) that can be used to efficiently compute this function. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1215 / 1235
页数:21
相关论文
共 50 条
  • [1] Ultraslow diffusion processes under stochastic resetting
    Liang, Yingjie
    Wei, Qing
    Wang, Wei
    Cherstvy, Andrey G.
    PHYSICS OF FLUIDS, 2025, 37 (03)
  • [2] Comb Model with Slow and Ultraslow Diffusion
    Sandev, T.
    Iomin, A.
    Kantz, H.
    Metzler, R.
    Chechkin, A.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2016, 11 (03) : 18 - 33
  • [3] A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION
    Xu, Wei
    Chen, Wen
    Liang, Ying-Jie
    Weberszpil, Jose
    THERMAL SCIENCE, 2017, 21 : S121 - S127
  • [4] Local equilibrium properties of ultraslow diffusion in the Sinai model
    Padash, Amin
    Aghion, Erez
    Schulz, Alexander
    Barkai, Eli
    Chechkin, Aleksei, V
    Metzler, Ralf
    Kantz, Holger
    NEW JOURNAL OF PHYSICS, 2022, 24 (07):
  • [5] On the generation of anomalous and ultraslow diffusion
    Eliazar, Iddo
    Klafter, Joseph
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (40)
  • [6] Reaction and ultraslow diffusion on comb structures
    Liang, Yingjie
    Sandev, Trifce
    Lenzi, Ervin Kaminski
    PHYSICAL REVIEW E, 2020, 101 (04)
  • [7] The Caputo Nonlocal Structural Derivative Ultraslow Diffusion Model of Language Change and the Microscopic Mechanism
    Xu, Wei
    Liu, Hui
    Liang, Yingjie
    Zhao, Shijun
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [8] A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids
    Liang, Yingjie
    Chen, Wen
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 56 : 131 - 137
  • [9] Localisation and universal fluctuations in ultraslow diffusion processes
    Godec, Aljaz
    Chechkin, Aleksei V.
    Barkai, Eli
    Kantz, Holger
    Metzler, Ralf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (49)
  • [10] A Survey of Models of Ultraslow Diffusion in Heterogeneous Materials
    Liang, Yingjie
    Wang, Shuhong
    Chen, Wen
    Zhou, Zhifang
    Magin, Richard L.
    APPLIED MECHANICS REVIEWS, 2019, 71 (04)