Spherically symmetric nonlinear structures

被引:8
|
作者
Calzetta, EA [1 ]
Kandus, A [1 ]
机构
[1] UNIV BUENOS AIRES,FAC CIENCIAS EXACTAS & NAT,DEPT FIS,RA-1428 BUENOS AIRES,DF,ARGENTINA
来源
PHYSICAL REVIEW D | 1997年 / 55卷 / 04期
关键词
D O I
10.1103/PhysRevD.55.1795
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present an analytical method to extract observational predictions about the nonlinear evolution of perturbations in a Tolman universe. We assume no a priori profile for them. We solve perturbatively a Hamilton-Jacobi equation for a timelike geodesic and obtain the null one as a limiting case in two situations: for an observer located in the center of symmetry and for a noncentered one. In the first case we find expressions to evaluate the density contrast and the number count and luminosity distance versus redshift relationships up to second order in the perturbations. In the second situation we calculate the CMBR anisotropies at large angular scales produced by the density contrast and by the asymmetry of the observer's location, up to first order in the perturbations. We develop our argument in such a way that the formulas are valid for any shape of the primordial spectrum.
引用
收藏
页码:1795 / 1811
页数:17
相关论文
共 50 条
  • [31] Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes
    Beig, Robert
    Siddiqui, Azad A.
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (22) : 5435 - 5439
  • [32] On noncommutative spherically symmetric spaces
    Maja Burić
    John Madore
    The European Physical Journal C, 2014, 74
  • [33] Spherically symmetric dynamical horizons
    Bartnik, R
    Isenberg, J
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (07) : 2559 - 2569
  • [34] A survey of spherically symmetric spacetimes
    Parry, Alan R.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2014, 4 (04) : 333 - 375
  • [35] Spherically symmetric random permutations
    Gnedin, Alexander
    Gorin, Vadim
    RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (02) : 342 - 355
  • [36] Spherically symmetric elasticity in Relativity
    Carot, J.
    Brito, I.
    Vaz, E. G. L. R.
    SPANISH RELATIVITY MEETING (ERE 2009), 2010, 229
  • [37] A charged spherically symmetric solution
    K. Moodley
    S. D. Maharaj
    K. S. Govinder
    Pramana, 2003, 61 : 493 - 499
  • [38] Viscosity in spherically symmetric accretion
    Ray, AK
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 344 (04) : 1085 - 1090
  • [39] Propagators in spherically symmetric backgrounds
    Bessa, A.
    de Carvalho, C. A. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31): : 9891 - 9901
  • [40] Holographic spherically symmetric metrics
    Petri, Michael
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2007, 16 (06) : 1603 - 1641