Phase diagram of symmetric binary fluid mixtures: First-order or second-order demixing

被引:24
|
作者
Antonevych, O
Forstmann, F
Diaz-Herrera, E
机构
[1] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Mexico City 09340, DF, Mexico
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 06期
关键词
D O I
10.1103/PhysRevE.65.061504
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Binary fluid mixtures of 1:1 concentration can demix in a phase transition of first order or of second order. We analyze the two scenarios in density-concentration space and relate them to the structure of the line at which the demixing coexistence surface cuts the liquid-vapor coexistence surface. These scenarios help us to decide between first and second order for a model of a symmetric Lennard-Jones mixture. An optimized reference hypernetted chain integral equation method is employed for calculating the correlation functions and from there the pressure and chemical potentials. We conclude that demixing of a 1:1 mixture is of first order in the whole range of parameters that we have investigated. We did not find a critical point in the 1:1 concentration plane.
引用
收藏
页码:1 / 061504
页数:7
相关论文
共 50 条
  • [41] Is consciousness first-order?! Processing of second-order stimuli in blindsight
    Trevethan, CT
    Sahraie, A
    PERCEPTION, 2005, 34 : 147 - 147
  • [42] Motion aftereffect of combined first-order and second-order motion
    van der Smagt, MJ
    Verstraten, FAJ
    Vaessen, EBP
    van Londen, T
    van de Grind, WA
    PERCEPTION, 1999, 28 (11) : 1397 - 1411
  • [43] A comparison of first-order and second-order transparency thresholds in stereopsis
    Langley, K.
    Fleet, D. J.
    Hibbard, P. B.
    PERCEPTION, 1998, 27 : 102 - 102
  • [44] Where First-Order and Monadic Second-Order Logic Coincide
    Elberfeld, Michael
    Grohe, Martin
    Tantau, Till
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2016, 17 (04)
  • [45] First-order and second-order classification image analysis of crowding
    Tjan, B. S.
    Nandy, A. S.
    PERCEPTION, 2006, 35 : 172 - 172
  • [46] Second-order Lagrangians admitting a first-order Hamiltonian formalism
    Rosado Maria, E.
    Munoz Masque, J.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (02) : 357 - 397
  • [47] Competition of first-order and second-order topology on the honeycomb lattice
    Bunney, Matthew
    Mizoguchi, Tomonari
    Hatsugai, Yasuhiro
    Rachel, Stephan
    PHYSICAL REVIEW B, 2022, 105 (04)
  • [48] Second-order Lagrangians admitting a first-order Hamiltonian formalism
    E. Rosado María
    J. Muñoz Masqué
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 357 - 397
  • [49] Motion aftereffect of superimposed first-order and second-order motion
    Zandvakili, A
    PERCEPTION, 2003, 32 : 100 - 101
  • [50] FIRST-ORDER, SECOND-ORDER AND THIRD-ORDER ENTROPIES OF ARABIC TEXT
    WANAS, MA
    ZAYED, AI
    SHAKER, MM
    TAHA, EH
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (01) : 123 - 123