Phase diagram of symmetric binary fluid mixtures: First-order or second-order demixing

被引:24
|
作者
Antonevych, O
Forstmann, F
Diaz-Herrera, E
机构
[1] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Mexico City 09340, DF, Mexico
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 06期
关键词
D O I
10.1103/PhysRevE.65.061504
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Binary fluid mixtures of 1:1 concentration can demix in a phase transition of first order or of second order. We analyze the two scenarios in density-concentration space and relate them to the structure of the line at which the demixing coexistence surface cuts the liquid-vapor coexistence surface. These scenarios help us to decide between first and second order for a model of a symmetric Lennard-Jones mixture. An optimized reference hypernetted chain integral equation method is employed for calculating the correlation functions and from there the pressure and chemical potentials. We conclude that demixing of a 1:1 mixture is of first order in the whole range of parameters that we have investigated. We did not find a critical point in the 1:1 concentration plane.
引用
收藏
页码:1 / 061504
页数:7
相关论文
共 50 条
  • [1] First-order versus second-order phase transformation in AuZn
    Sanati, M.
    Albers, R. C.
    Lookman, T.
    Saxena, A.
    PHYSICAL REVIEW B, 2013, 88 (02)
  • [2] First-Order and Second-Order Ambiguity Aversion
    Lang, Matthias
    MANAGEMENT SCIENCE, 2017, 63 (04) : 1254 - 1269
  • [3] Fractional order capacitor in first-order and second-order filter
    Sengar K.
    Kumar A.
    Micro and Nanosystems, 2020, 12 (01) : 75 - 78
  • [4] Repeatable First-Order and Second-Order PMD Emulator Using Binary Polarization Switches
    Yan, Lianshan
    Pan, Wei
    Luo, Bin
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (21-24) : 2111 - 2113
  • [5] Solutions of Second-Order PDEs with First-Order Quotients
    E. Schneider
    Lobachevskii Journal of Mathematics, 2020, 41 : 2491 - 2509
  • [6] Axiomatizations of arithmetic and the first-order/second-order divide
    Novaes, Catarina Dutilh
    SYNTHESE, 2019, 196 (07) : 2583 - 2597
  • [7] A Second-Order Reliability Method With First-Order Efficiency
    Zhang, Junfu
    Du, Xiaoping
    JOURNAL OF MECHANICAL DESIGN, 2010, 132 (10)
  • [8] Limited Second-Order Functionality in a First-Order Setting
    Matt Kaufmann
    J Strother Moore
    Journal of Automated Reasoning, 2020, 64 : 391 - 422
  • [9] MAPPING SECOND-ORDER ACPS INTO FIRST-ORDER ACPS
    ROSENCRA.SI
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A354 - A354
  • [10] SECOND-ORDER ARITHMETIC AND FIRST-ORDER DEGREE THEORY
    SIMPSON, SG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (06): : A553 - A553