Sliding mode based fault tolerant control for autonomous underwater vehicle

被引:34
|
作者
Lv, Tu [1 ]
Zhou, Junliang [1 ]
Wang, Yujia [1 ]
Gong, Wei [1 ]
Zhang, Mingjun [1 ]
机构
[1] Harbin Engn Univ, Coll Mech & Elect Engn, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous underwater vehicle (AUV); Thruster fault; Sliding mode control; Fault tolerant control; THRUSTER; RECONSTRUCTION; DIAGNOSIS;
D O I
10.1016/j.oceaneng.2020.107855
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
An investigation is conducted into thruster fault tolerant control for autonomous underwater vehicle (AUV) in this paper. In order to reduce the steady error caused by thruster faults in the use of a traditional sliding mode controller, a fault tolerant control method integrated with thrust allocation is proposed based on the sliding mode theory. According to the proposed method, a thruster weighted matrix is introduced, whose value varies depending on the fault magnitude of the thruster. Then, the proposed controller is applied to compensate for the insufficient thrust of the fault thruster. In order to mitigate the chattering phenomenon in the sliding process, the adaptive law that applies to switching gain and the thickness of boundary layer is developed for the proposed controller. The stability of the system is demonstrated by the frame of Lyapunov theory. Finally, a series of pool-experiments on AUV prototype are conducted to validate the proposed method.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fault-tolerant Control Based on Adaptive Sliding Mode for Underwater Vehicle with Thruster Fault
    Wang, Yujia
    Zhang, Mingjun
    Chu, Zhenzhong
    Liu, Xing
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5323 - 5328
  • [2] Fault Tolerant Control for Autonomous Underwater Vehicle
    Joshi, Sneha
    Talange, D. B.
    2014 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2014), 2014, : 658 - 662
  • [3] Sliding mode control of an autonomous underwater vehicle
    Wang, LR
    Liu, JC
    Yu, HN
    Xu, YR
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 247 - 251
  • [4] Sliding Mode Based MIMO Control of Autonomous Underwater Vehicle
    Farhan, M.
    Bhatti, A. I.
    Kamal, W. A.
    Yousafzai, I. K.
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 2899 - 2904
  • [5] Fault-tolerant control of an autonomous underwater vehicle
    Perrault, D
    Nahon, M
    OCEANS'98 - CONFERENCE PROCEEDINGS, VOLS 1-3, 1998, : 820 - 824
  • [6] Adaptive sliding mode control of an autonomous underwater vehicle
    State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
    不详
    Jiqiren, 2009, SUPPL. (22-25): : 22 - 25
  • [7] Autonomous Underwater Vehicle Heading Control Based on Sliding Mode Fuzzy Control
    Ding, Hao
    Wang, De-Shi
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 4, 2009, : 505 - 508
  • [8] A fuzzy fault tolerant control scheme for an autonomous underwater vehicle
    Pearson, AR
    Sutton, R
    Burns, RS
    Robinson, P
    CONTROL APPLICATIONS IN MARINE SYSTEMS 2001 (CAMS 2001), 2002, : 425 - 430
  • [9] Sensor fault-tolerant control of an autonomous underwater vehicle
    Fang, Shao-Ji
    Wang, Li-Rong
    Zhu, Ji-Hua
    Pang, Yong-Jie
    Jiqiren/Robot, 2007, 29 (02): : 155 - 159
  • [10] Adaptive fault-tolerant control for an autonomous underwater vehicle
    Tabatabaee-Nasab, Fahimeh S.
    Moosavian, S. Ali A.
    Khalaji, Ali Keymasi
    ROBOTICA, 2022, 40 (11) : 4076 - 4089