Development and validation of a prediction model for gestational hypertension in a Ghanaian cohort

被引:21
|
作者
Antwi, Edward [1 ,2 ]
Groenwold, Rolf H. H. [1 ]
Browne, Joyce L. [1 ]
Franx, Arie [3 ]
Agyepong, Irene A. [2 ]
Koram, Kwadwo A. [4 ]
Klipstein-Grobusch, Kerstin [1 ,4 ]
Grobbee, Diederick E. [1 ]
机构
[1] Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Julius Global Hlth, Utrecht, Netherlands
[2] Ghana Hlth Serv, Accra, Ghana
[3] Univ Med Ctr Utrecht, Dept Obstet & Gynecol, Utrecht, Netherlands
[4] Univ Witwatersrand, Sch Publ Hlth, Div Epidemiol & Biostat, Johannesburg, South Africa
来源
BMJ OPEN | 2017年 / 7卷 / 01期
关键词
predictors; prediction model; hypertensive disorders of pregnancy; risk scores; gestational hypertension; UTERINE ARTERY DOPPLER; RISK-FACTORS; NULLIPAROUS WOMEN; MATERNAL FACTORS; PREECLAMPSIA; PREGNANCY; DISORDERS; BIOMARKERS; DIAGNOSIS; SURVIVAL;
D O I
10.1136/bmjopen-2016-012670
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective To develop and validate a prediction model for identifying women at increased risk of developing gestational hypertension (GH) in Ghana. Design A prospective study. We used frequencies for descriptive analysis, (2) test for associations and logistic regression to derive the prediction model. Discrimination was estimated by the c-statistic. Calibration was assessed by calibration plot of actual versus predicted probability. Setting Primary care antenatal clinics in Ghana. Participants 2529 pregnant women in the development cohort and 647 pregnant women in the validation cohort. Inclusion criterion was women without chronic hypertension. Primary outcome Gestational hypertension. Results Predictors of GH were diastolic blood pressure, family history of hypertension in parents, history of GH in a previous pregnancy, parity, height and weight. The c-statistic of the original model was 0.70 (95% CI 0.67-0.74) and 0.68 (0.60 to 0.77) in the validation cohort. Calibration was good in both cohorts. The negative predictive value of women in the development cohort at high risk of GH was 92.0% compared to 94.0% in the validation cohort. Conclusions The prediction model showed adequate performance after validation in an independent cohort and can be used to classify women into high, moderate or low risk of developing GH. It contributes to efforts to provide clinical decision-making support to improve maternal health and birth outcomes.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Development and validation of a clinical model for preconception and early pregnancy risk prediction of gestational diabetes mellitus in nulliparous women
    Donovan, Brittney M.
    Breheny, Patrick J.
    Robinson, Jennifer G.
    Baer, Rebecca J.
    Saftlas, Audrey F.
    Bao, Wei
    Greiner, Andrea L.
    Carter, Knute D.
    Oltman, Scott P.
    Rand, Larry
    Jelliffe-Pawlowski, Laura L.
    Ryckman, Kelli K.
    PLOS ONE, 2019, 14 (04):
  • [42] Polygenic prediction of preeclampsia and gestational hypertension
    Michael C. Honigberg
    Buu Truong
    Raiyan R. Khan
    Brenda Xiao
    Laxmi Bhatta
    Ha My T. Vy
    Rafael F. Guerrero
    Art Schuermans
    Margaret Sunitha Selvaraj
    Aniruddh P. Patel
    Satoshi Koyama
    So Mi Jemma Cho
    Shamsudheen Karuthedath Vellarikkal
    Mark Trinder
    Sarah M. Urbut
    Kathryn J. Gray
    Ben M. Brumpton
    Snehal Patil
    Sebastian Zöllner
    Mariah C. Antopia
    Richa Saxena
    Girish N. Nadkarni
    Ron Do
    Qi Yan
    Itsik Pe’er
    Shefali Setia Verma
    Rajat M. Gupta
    David M. Haas
    Hilary C. Martin
    David A. van Heel
    Triin Laisk
    Pradeep Natarajan
    Nature Medicine, 2023, 29 : 1540 - 1549
  • [43] Polygenic prediction of preeclampsia and gestational hypertension
    Honigberg, Michael C.
    Truong, Buu
    Khan, Raiyan R.
    Xiao, Brenda
    Bhatta, Laxmi
    Vy, Ha My T.
    Guerrero, Rafael F.
    Schuermans, Art
    Selvaraj, Margaret Sunitha
    Patel, Aniruddh P.
    Koyama, Satoshi
    Cho, So Mi Jemma
    Vellarikkal, Shamsudheen Karuthedath
    Trinder, Mark
    Urbut, Sarah M.
    Gray, Kathryn J.
    Brumpton, Ben M.
    Patil, Snehal
    Zollner, Sebastian
    Antopia, Mariah C.
    Saxena, Richa
    Nadkarni, Girish N.
    Do, Ron
    Yan, Qi
    Pe'er, Itsik
    Verma, Shefali Setia
    Gupta, Rajat M.
    Haas, David M.
    Martin, Hilary C.
    van Heel, David A.
    Laisk, Triin
    Natarajan, Pradeep
    NATURE MEDICINE, 2023, 29 (06) : 1540 - +
  • [44] Improved prediction of gestational hypertension by inclusion of placental growth factor and pregnancy associated plasma protein-a in a sample of Ghanaian women
    Edward Antwi
    Kerstin Klipstein-Grobusch
    Joyce L. Browne
    Peter C. Schielen
    Kwadwo A. Koram
    Irene A. Agyepong
    Diederick E. Grobbee
    Reproductive Health, 15
  • [45] DEVELOPMENT AND VALIDATION OF A PREDICTION MODEL FOR HAND OSTEOARTHRITIS
    Johnsen, M. B.
    Magnusson, K.
    Borte, S.
    Gabrielsen, M. E.
    Winsvold, B. S.
    Skogholt, A.
    Thomas, L.
    Storheim, K.
    Hveem, K.
    Zwart, J. -A.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 : S425 - S426
  • [46] Development and Validation of a Bronchoscopic Yield Prediction Model
    Fox, A.
    Silvestri, G. A.
    Nietert, P. J.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201
  • [47] Development and Validation of a Cooling Load Prediction Model
    Khabthani, Abir
    Chaabane, Leila
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (02) : 158 - 164
  • [48] Improved prediction of gestational hypertension by inclusion of placental growth factor and pregnancy associated plasma protein-a in a sample of Ghanaian women
    Antwi, Edward
    Klipstein-Grobusch, Kerstin
    Browne, Joyce L.
    Schielen, Peter C.
    Koram, Kwadwo A.
    Agyepong, Irene A.
    Grobbee, Diederick E.
    REPRODUCTIVE HEALTH, 2018, 15
  • [49] Development and validation of a clinical model to predict preconception risk of gestational diabetes mellitus in nulliparous women: A retrospective cohort study
    Jin, Fengzhen
    Sun, Junjie
    Yang, Yuanpei
    Li, Ruiyue
    Luo, Mi
    Huang, Qiao
    Liu, Xiaoli
    INTERNATIONAL JOURNAL OF GYNECOLOGY & OBSTETRICS, 2024, 165 (01) : 256 - 264
  • [50] Development and Validation of a Coronary Heart Disease Risk Prediction Model in Snorers with Hypertension: A Retrospective Observed Study
    Wang, Mengru
    Wang, Menghui
    Zhu, Qing
    Yao, Xiaoguang
    Heizhati, Mulalibieke
    Cai, Xintian
    Ma, Yue
    Wang, Run
    Hong, Jing
    Yao, Ling
    Sun, Le
    Yue, Na
    Ren, Yingli
    Li, Nanfang
    RISK MANAGEMENT AND HEALTHCARE POLICY, 2022, 15 : 1999 - 2009