Robust minimality of iterated function systems with two generators

被引:18
|
作者
Homburg, Ale Jan [1 ,2 ]
Nassiri, Meysam [3 ]
机构
[1] Univ Amsterdam, KdV Inst Math, NL-1098 XH Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
[3] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
DIFFEOMORPHISMS;
D O I
10.1017/etds.2013.34
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every compact manifold without boundary admits a pair of diffeomorphisms that generates C-1 robustly minimal dynamics. We apply the results to the construction of blenders and robustly transitive skew product diffeomorphisms.
引用
收藏
页码:1914 / 1929
页数:16
相关论文
共 50 条
  • [21] Ends of iterated function systems
    Conner, Gregory R.
    Hojka, Wolfram
    MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (3-4) : 1073 - 1083
  • [22] On quantum iterated function systems
    Jadczyk, A
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2004, 2 (03): : 492 - 503
  • [23] Tiling iterated function systems
    Barnsley, Louisa F.
    Barnsley, Michael F.
    Vince, Andrew
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [24] Iterated function systems on multifunctions
    La Torre, Davide
    Mendivil, Franklin
    Vrscay, Edward R.
    MATH EVERYWHERE: DETERMINISTIC AND STOCHASTIC MODELLING IN BIOMEDICINE, ECONOMICS AND INDUSTRY, 2007, : 125 - +
  • [25] TWO-SIDED LIMIT SHADOWING PROPERTY ON ITERATED FUNCTION SYSTEMS
    Mohtashamipour, M.
    Bahabadi, A. Zamani
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (01): : 113 - 125
  • [26] Generalized Iterated Function Systems
    Goyal, Komal
    Prasad, Bhagwati
    ADVANCED TRENDS IN MECHANICAL AND AEROSPACE ENGINEERING (ATMA-2019), 2021, 2316
  • [27] Wavelets for iterated function systems
    Bohnstengel, Jana
    Kesseboehmer, Marc
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (03) : 583 - 601
  • [28] EVOLUTIONARY APPROACH TO FINDING ITERATED FUNCTION SYSTEMS FOR A TWO DIMENSIONAL IMAGE
    Bielecki, Andrzej
    Strug, Barbara
    COMPUTER VISION AND GRAPHICS (ICCVG 2004), 2006, 32 : 516 - 521
  • [29] Dual systems of algebraic iterated function systems
    Rao, Hui
    Wen, Zhi-Ying
    Yang, Ya-Min
    ADVANCES IN MATHEMATICS, 2014, 253 : 63 - 85
  • [30] Patterns of bifurcation in iterated function systems
    Bahar, S
    CHAOS SOLITONS & FRACTALS, 1996, 7 (02) : 205 - 210