Hyperspectral Image Classification using Random Forests and Neural Networks

被引:0
|
作者
Abe, B. T. [1 ,2 ]
Olugbara, O. O. [3 ]
Marwala, T. [4 ]
机构
[1] Univ Witwatersrand, Sch Elect & Informat Engn, Johannesburg, South Africa
[2] Tshwane Univ Technol, Dept Elect Engn, Pretoria, South Africa
[3] Durban Univ Technol, Dept Informat Technol, Durban, South Africa
[4] Univ Johannesburg, Fac Engn & Built Environm, Johannesburg, South Africa
关键词
Generalized reduced gradient; hyperspectral image; land cover classification; classifiers; ENDMEMBER EXTRACTION ALGORITHMS; ACCURACY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral unmixing of hyperspectral images are based on the knowledge of a set of unknown endmembers. Unique characteristics of hyperspectral dataset enable different processing problems to be resolved using robust mathematical logic such as image classification. Consequently, pixel purity index is used to find endmembers from Washington DC mall hyperspectral image dataset. The generalized reduced gradient algorithm is used to estimate fractional abundances in the hyperspectral image dataset. The WEKA data mining tool is selected to construct random forests and neural networks classifiers from the set of fractional abundances. The performances of these classifiers are experimentally compared for hyperspectral data land cover classification. Results show that random forests give better classification accuracy when compared to neural networks. The study proffers solution to the problem associated with land cover classification by exploring generalized reduced gradient approach with learning classifiers to improve overall classification accuracy. The classification accuracy comparison of classifiers is important for decision maker to consider tradeoffs in accuracy and complexity of methods.
引用
收藏
页码:522 / 527
页数:6
相关论文
共 50 条
  • [31] Spectral-Spatial Hyperspectral Image Classification Using Cascaded Convolutional Neural Networks
    Dovletov, Gurbandurdy
    Hegemann, Tobias
    Pauli, Josef
    IMAGE ANALYSIS, 2019, 11482 : 78 - 89
  • [32] AUTOMATIC FUSION AND CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA USING RANDOM FORESTS
    Merentitis, Andreas
    Debes, Christian
    Heremans, Roel
    Frangiadakis, Nikolaos
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1245 - 1248
  • [33] Fusion of Hyperspectral Image and LiDAR Data and Classification using Deep Convolutional Neural Networks
    Salman, Mesut
    Yuksel, Seniha Esen
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [34] Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification
    Zhong, Zilong
    Li, Jonathan
    Clausi, David A.
    Wong, Alexander
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3318 - 3329
  • [35] Classification of Hyperspectral Images Using Conventional Neural Networks
    Kozik, V., I
    Nezhevenko, E. S.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2021, 57 (02) : 123 - 131
  • [36] Classification of Hyperspectral Images Using Conventional Neural Networks
    V. I. Kozik
    E. S. Nezhevenko
    Optoelectronics, Instrumentation and Data Processing, 2021, 57 : 123 - 131
  • [37] Hyperspectral Image Classification With Canonical Correlation Forests
    Xia, Junshi
    Yokoya, Naoto
    Iwasaki, Akira
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (01): : 421 - 431
  • [38] Hyperspectral Image Classification Using Random Occlusion Data Augmentation
    Haut, Juan Mario
    Paoletti, Mercedes E.
    Plaza, Javier
    Plaza, Antonio
    Li, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (11) : 1751 - 1755
  • [39] Ontological Random Forests for Image Classification
    Xu, Ning
    Wang, Jiangping
    Qi, Guojun
    Huang, Thomas
    Lin, Weiyao
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2015, 5 (03) : 61 - 74
  • [40] Hyperspectral Image Classification With Stacking Spectral Patches and Convolutional Neural Networks
    Shu, Lei
    McIsaac, Kenneth
    Osinski, Gordon R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (10): : 5975 - 5984