Efficient CRISPR/Cas9 genome editing with Citrus embryogenic cell cultures

被引:29
|
作者
Dutt, Manjul [1 ]
Mou, Zhonglin [2 ]
Zhang, Xudong [2 ]
Tanwir, Sameena E. [1 ]
Grosser, Jude W. [1 ]
机构
[1] Univ Florida, Ctr Citrus Res & Educ, Lake Alfred, FL 33850 USA
[2] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA
关键词
Agrobacterium tumefaciens; CRISPR; Cas9; Citrus cell suspensions; Genetic transformation; AGROBACTERIUM-MEDIATED TRANSFORMATION; GENETIC-TRANSFORMATION; TARGETED MUTAGENESIS; SUSPENSION-CULTURES; DUNCAN GRAPEFRUIT; RNA; REGENERATION; PLANTS; ARABIDOPSIS; EXPRESSION;
D O I
10.1186/s12896-020-00652-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Development of precise genome editing strategies is a prerequisite for producing edited plants that can aid in the study of gene function and help understand the genetic traits in a cultivar. Citrus embryogenic cell cultures can be used to rapidly produce a large population of genome edited transformed citrus lines. The ability to introduce specific mutations in the genome of these cells using two constructs (pC-PDS1 and pC-PDS2) was evaluated in this study. Results Citrus sinensis 'EV2' embryogenic cell cultures are amenable to Agrobacterium-mediated CRISPR/Cas9-based genome editing. Guide RNAs (gRNAs) targeting two locations in the phytoene desaturase (PDS) gene were either driven by the Arabidopsis U6-26 promoter (pC-PDS1) or assembled as a Csy4 array under the control of the CmYLCV promoter (pC-PDS2). All transgenic embryos were completely albino and no variegated phenotype was observed. We evaluated 12 lines from each construct in this study and the majority contain either insertion (1-2 bp), substitution (1 bp), or deletion (1-3 bp) mutations that occurred close to the protospacer adjacent motif. Conclusions Both the pC-PDS1 and pC-PDS2 could successfully edit the citrus embryogenic cell cultures. However, the editing efficiency was dependent on the gRNA, confirming that the selection of a proper gRNA is essential for successful genome editing using the CRISPR/Cas9 technique. Also, utilization of embryogenic cell cultures offers another option for successful genome editing in citrus.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system
    Irion, Uwe
    Krauss, Jana
    Nuesslein-Volhard, Christiane
    DEVELOPMENT, 2014, 141 (24): : 4827 - 4830
  • [42] Efficient CRISPR/Cas9 Plasmids for Rapid and Versatile Genome Editing in Drosophila
    Gokcezade, Joseph
    Sienski, Grzegorz
    Duchek, Peter
    G3-GENES GENOMES GENETICS, 2014, 4 (11): : 2279 - 2282
  • [43] Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system
    Xiong, Xingpeng
    Liu, Weimiao
    Jiang, Jianxia
    Xu, Liai
    Huang, Li
    Cao, Jiashu
    MOLECULAR GENETICS AND GENOMICS, 2019, 294 (05) : 1251 - 1261
  • [44] Efficient CRISPR/Cas9 Genome Editing in Alfalfa Using a Public Germplasm
    Bottero, Emilia
    Massa, Gabriela
    Gonzalez, Matias
    Stritzler, Margarita
    Tajima, Hiromi
    Gomez, Cristina
    Frare, Romina
    Feingold, Sergio
    Blumwald, Eduardo
    Ayub, Nicolas
    Soto, Gabriela
    FRONTIERS IN AGRONOMY, 2021, 3
  • [45] Efficient Editing of Malaria Parasite Genome Using the CRISPR/Cas9 System
    Zhang, Cui
    Xiao, Bo
    Jiang, Yuanyuan
    Zhao, Yihua
    Li, Zhenkui
    Gao, Han
    Ling, Yuan
    Wei, Jun
    Li, Shaoneng
    Lu, Mingke
    Su, Xin-Zhuan
    Cui, Huiting
    Yuan, Jing
    MBIO, 2014, 5 (04):
  • [46] Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system
    Xingpeng Xiong
    Weimiao Liu
    Jianxia Jiang
    Liai Xu
    Li Huang
    Jiashu Cao
    Molecular Genetics and Genomics, 2019, 294 : 1251 - 1261
  • [47] Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter
    Fei Zhang
    Chantal LeBlanc
    Vivian F. Irish
    Yannick Jacob
    Plant Cell Reports, 2017, 36 : 1883 - 1887
  • [48] Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter
    Zhang, Fei
    LeBlanc, Chantal
    Irish, Vivian F.
    Jacob, Yannick
    PLANT CELL REPORTS, 2017, 36 (12) : 1883 - 1887
  • [49] Mouse Parthenote Stem Cell Genome Editing Using CRISPR/CAS9
    Meijer, R. M.
    Lawitts, J.
    Dinopoulou, V.
    Kearnan, M.
    Kiessling, A. A.
    MOLECULAR BIOLOGY OF THE CELL, 2014, 25
  • [50] Therapeutic Crispr/Cas9 Genome Editing for Treating Sickle Cell Disease
    Park, So Hyun
    Lee, Ciaran M.
    Deshmukh, Harshavardhan
    Bao, Gang
    BLOOD, 2016, 128 (22)