Fast Object Segmentation by Growing Minimal Paths from a Single Point on 2D or 3D Images

被引:55
|
作者
Benmansour, Fethallah [1 ]
Cohen, Laurent D. [1 ]
机构
[1] Univ Paris 09, CEREMADE, CNRS, UMR 7534, F-75775 Paris 16, France
关键词
Image segmentation; Minimal paths; Energy minimizing curves; Surface meshing; Object extraction; Digital topology; Fast marching method; LEVEL SET METHOD; SHAPE;
D O I
10.1007/s10851-008-0131-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a new method for segmenting closed contours and surfaces. Our work builds on a variant of the minimal path approach. First, an initial point on the desired contour is chosen by the user. Next, new keypoints are detected automatically using a front propagation approach. We assume that the desired object has a closed boundary. This a-priori knowledge on the topology is used to devise a relevant criterion for stopping the keypoint detection and front propagation. The final domain visited by the front will yield a band surrounding the object of interest. Linking pairs of neighboring keypoints with minimal paths allows us to extract a closed contour from a 2D image. This approach can also be used for finding an open curve giving extra information as stopping criteria. Detection of a variety of objects on real images is demonstrated. Using a similar idea, we can extract networks of minimal paths from a 3D image called Geodesic Meshing. The proposed method is applied to 3D data with promising results.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [31] Deep Scene Flow Learning: From 2D Images to 3D Point Clouds
    Harbin Engineering University, School of Information and Communication Engineering, Heilongjiang, Harbin
    150001, China
    不详
    150001, China
    不详
    ON
    K1N 6N5, Canada
    IEEE Trans Pattern Anal Mach Intell, 2024, 1 (185-208):
  • [32] Deep Scene Flow Learning: From 2D Images to 3D Point Clouds
    Xiang, Xuezhi
    Abdein, Rokia
    Li, Wei
    El Saddik, Abdulmotaleb
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (01) : 185 - 208
  • [33] Face recognition from 2D and 3D images
    Wang, YJ
    Chua, CS
    Ho, YK
    AUDIO- AND VIDEO-BASED BIOMETRIC PERSON AUTHENTICATION, PROCEEDINGS, 2001, 2091 : 26 - 31
  • [34] 3D skeleton construction by multi-view 2D images and 3D model segmentation
    Tsai, Joseph C.
    Chang, Shih-Ming
    Yen, Shwu-Huey
    Shih, Timothy K.
    Li, Kuan-Ching
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2015, 10 (04) : 368 - 374
  • [35] 3D shape reconstruction from 2D images
    Hirano, Daisuke
    Funayama, Yusuke
    Maekawa, Takashi
    Computer-Aided Design and Applications, 2009, 6 (05): : 701 - 710
  • [36] From 2D images to 3D face geometry
    Lengagne, R
    Tarel, JP
    Monga, O
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, 1996, : 301 - 306
  • [37] Interactive Object Segmentation in 3D Point Clouds
    Kontogianni, Theodora
    Celikkan, Ekin
    Tang, Siyu
    Schindler, Konrad
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 2891 - 2897
  • [38] Progressive Minimal Path Method for Segmentation of 2D and 3D Line Structures
    Liao, Wei
    Woerz, Stefan
    Kang, Chang-Ki
    Cho, Zang-Hee
    Rohr, Karl
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (03) : 696 - 709
  • [39] SimPB: A Single Model for 2D and 3D Object Detection from Multiple Cameras
    Tang, Yingqi
    Meng, Zhaotie
    Chen, Guoliang
    Cheng, Erkang
    COMPUTER VISION - ECCV 2024, PT II, 2025, 15060 : 1 - 17
  • [40] 3D IMAGES WITH 2D FOOTPRINT
    Ferre Ferri, Enrique
    REVISTA SONDA-INVESTIGACION Y DOCENCIA EN ARTES Y LETRAS, 2020, (09): : 73 - 82