3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks

被引:63
|
作者
Hull, Sarah M. [1 ]
Lindsay, Christopher D. [2 ]
Brunel, Lucia G. [1 ]
Shiwarski, Daniel J. [3 ]
Tashman, Joshua W. [3 ]
Roth, Julien G. [4 ]
Myung, David [1 ,5 ,6 ]
Feinberg, Adam W. [3 ,7 ]
Heilshorn, Sarah C. [2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
[4] Stanford Univ, Inst Stem Cell Biol & Regenerat Med, Stanford, CA 94305 USA
[5] Stanford Univ, Byers Eye Inst, Dept Ophthalmol, Sch Med, Stanford, CA 94305 USA
[6] VA Palo Alto Hlth Care Syst, Div Ophthalmol, Palo Alto, CA 94304 USA
[7] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
3D bioprinting; bioink; biomaterials; bioorthogonal chemistry; BIOORTHOGONAL CLICK CHEMISTRY; SOLUTE DIFFUSION; STEM-CELLS; HYDROGELS; CULTURE; GELATIN; MAINTENANCE; NANOFIBERS; STIFFNESS; THERAPY;
D O I
10.1002/adfm.202007983
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Three-dimensional (3D) bioprinting is a promising technology to produce tissue-like structures, but a lack of diversity in bioinks is a major limitation. Ideally each cell type would be printed in its own customizable bioink. To fulfill this need for a universally applicable bioink strategy, a versatile bioorthogonal bioink crosslinking mechanism that is cell compatible and works with a range of polymers is developed. This family of materials is termed UNIversal, Orthogonal Network (UNION) bioinks. As demonstration of UNION bioink versatility, gelatin, hyaluronic acid (HA), recombinant elastin-like protein (ELP), and polyethylene glycol (PEG) are each used as backbone polymers to create inks with storage moduli spanning from 200 to 10 000 Pa. Because UNION bioinks are crosslinked by a common chemistry, multiple materials can be printed together to form a unified, cohesive structure. This approach is compatible with any support bath that enables diffusion of UNION crosslinkers. Both matrix-adherent human corneal mesenchymal stromal cells and non-matrix-adherent human induced pluripotent stem cell-derived neural progenitor spheroids are printed with UNION bioinks. The cells retained high viability and expressed characteristic phenotypic markers after printing. Thus, UNION bioinks are a versatile strategy to expand the toolkit of customizable materials available for 3D bioprinting.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] An Overview of Extracellular Matrix-Based Bioinks for 3D Bioprinting
    Wang, Haonan
    Yu, Huaqing
    Zhou, Xia
    Zhang, Jilong
    Zhou, Hongrui
    Hao, Haitong
    Ding, Lina
    Li, Huiying
    Gu, Yanru
    Ma, Junchi
    Qiu, Jianfeng
    Ma, Depeng
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [42] Chondroitin and Dermatan Sulfate Bioinks for 3D Bioprinting and Cartilage Regeneration
    Lafuente-Merchan, Markel
    Ruiz-Alonso, Sandra
    Zabala, Alaitz
    Galvez-Martin, Patricia
    Antonio Marchal, Juan
    Vazquez-Lasa, Blanca
    Gallego, Idoia
    Saenz-del-Burgo, Laura
    Luis Pedraz, Jose
    MACROMOLECULAR BIOSCIENCE, 2022, 22 (03)
  • [43] Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks
    Gao, Qiqi
    Kim, Byoung-Soo
    Gao, Ge
    MARINE DRUGS, 2021, 19 (12)
  • [44] 3D Bioprinting of soft tissues using nanocellulose-based cell instructive bioinks
    Karabulut, Erdem
    Orrhult, Linnea Strid
    Gatenholm, Paul
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [45] Advancements in 3D skin bioprinting:processes,bioinks,applications and sensor integration
    I Deniz Derman
    Taino Rivera
    Laura Garriga Cerda
    Yogendra Pratap Singh
    Shweta Saini
    Hasan Erbil Abaci
    Ibrahim T Ozbolat
    International Journal of Extreme Manufacturing, 2025, 7 (01) : 243 - 282
  • [46] An Overview of Hydrogel-Based Bioinks for 3D Bioprinting of Soft Tissues
    Soumitra Das
    Bikramjit Basu
    Journal of the Indian Institute of Science, 2019, 99 : 405 - 428
  • [47] 3D Bioprinting of Novel κ-Carrageenan Bioinks: An Algae-Derived Polysaccharide
    Marques, Diana M. C.
    Silva, Joao C.
    Serro, Ana Paula
    Cabral, Joaquim M. S.
    Sanjuan-Alberte, Paola
    Ferreira, Frederico C.
    BIOENGINEERING-BASEL, 2022, 9 (03):
  • [48] Candidate Bioinks for Extrusion 3D Bioprinting-A Systematic Review of the Literature
    Tarassoli, Sam P.
    Jessop, Zita M.
    Jovic, Thomas
    Hawkins, Karl
    Whitaker, Iain S.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [49] 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks
    Rastin, Hadi
    Zhang, Bingyang
    Mazinani, Arash
    Hassan, Kamrul
    Bi, Jingxiu
    Tran Thanh Tung
    Losic, Dusan
    NANOSCALE, 2020, 12 (30) : 16069 - 16080
  • [50] Hydrogels for 3D embedded bioprinting: a focused review on bioinks and support baths
    Zhou, Ke
    Sun, Yadong
    Yang, Jiquan
    Mao, Hongli
    Gu, Zhongwei
    JOURNAL OF MATERIALS CHEMISTRY B, 2022, 10 (12) : 1897 - 1907