Thermal evolution of microstructure in ion-irradiated GaN

被引:18
|
作者
Bae, In-Tae [1 ,2 ]
Jiang, Weilin [1 ]
Wang, Chongmin [1 ]
Weber, William J. [1 ]
Zhang, Yanwen [1 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
[2] SUNY Binghamton, Small Scale Syst Integrat & Packaging Ctr, Binghamton, NY 13902 USA
关键词
amorphous semiconductors; annealing; crystal microstructure; electron diffraction; electron energy loss spectra; gallium compounds; III-V semiconductors; ion beam effects; nanofabrication; nanostructured materials; recrystallisation; semiconductor thin films; transmission electron microscopy; wide band gap semiconductors; SOLID-PHASE EPITAXY; BEAM; AMORPHIZATION; IMPLANTATION; DISORDER; DEFECTS;
D O I
10.1063/1.3106606
中图分类号
O59 [应用物理学];
学科分类号
摘要
The thermal evolution of the microstructure created by irradiation of a GaN single crystal with 2 MeV Au2+ ions at 150 K is characterized following annealing at 973 K using transmission electron microscopy. In the as-irradiated sample characterized at 300 K, Ga nanocrystals with the diamond structure, which is an unstable configuration for Ga, are directly observed together with nitrogen bubbles in the irradiation-induced amorphous layer. A simple model is proposed to explain Ga nanocrystal formation. Upon thermal annealing, the thickness of the amorphous layer decreases by similar to 13.1% and nanobeam electron diffraction analysis indicates no evidence for residual Ga nanocrystals, but instead reveals a mixture of hexagonal and cubic GaN phases in the annealed sample. Nitrogen molecules, captured in the as-irradiated bubbles, appear to disassociate and react with Ga nanocrystals during the thermal annealing to form crystalline GaN. In addition, electron energy loss spectroscopy measurements reveal an volume change of 18.9% for the as-irradiated amorphous layer relative to the virgin single crystal GaN. This relative swelling of the damaged layer reduces to 7.7% after thermal annealing. Partial recrystallization and structural relaxation of the GaN amorphous state are believed responsible for the volume change.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Monitoring of the microstructure of ion-irradiated nuclear ceramics by in situ Raman spectroscopy
    Miro, S.
    Bordas, E.
    Thome, L.
    Costantini, J. -M.
    Lepretre, F.
    Trocellier, P.
    Serruys, Y.
    Beck, L.
    Gosset, D.
    Verlet, R.
    Huguet-Garcia, J.
    Tupin, M.
    Belleil, M.
    JOURNAL OF RAMAN SPECTROSCOPY, 2016, 47 (04) : 476 - 485
  • [22] Atomic simulations of effect on thermal conductivity of ion-irradiated graphene
    Gu, Jinjie
    Huang, Lirong
    Shi, Weiqi
    PHYSICA B-CONDENSED MATTER, 2019, 554 : 40 - 44
  • [23] Luminescence of ion-irradiated α-quartz
    Lieb, Klaus-Peter
    Keinonen, Juhani
    CONTEMPORARY PHYSICS, 2006, 47 (05) : 305 - 331
  • [24] Evaporation of ion-irradiated disks
    Dullemond, C.P.
    Spruit, H.C.
    Astronomy and Astrophysics, 2005, 434 (02): : 415 - 422
  • [25] Evaporation of ion-irradiated disks
    Dullemond, CP
    Spruit, HC
    ASTRONOMY & ASTROPHYSICS, 2005, 434 (02) : 415 - 422
  • [26] Evolution of ion-irradiated point defect concentration by cluster dynamics simulation
    冯帅帅
    吕沙沙
    陈良
    李正操
    Chinese Physics B, 2021, (05) : 455 - 460
  • [27] The influence of helium on cavity evolution in ion-irradiated T91
    Monterrosa, Anthony M.
    Jiao, Zhijie
    Was, Gary S.
    JOURNAL OF NUCLEAR MATERIALS, 2018, 509 : 707 - 721
  • [28] Texture evolution and mechanical properties of ion-irradiated Au thin films
    Dietiker, Marianne
    Olliges, Sven
    Schinhammer, Michael
    Seita, Matteo
    Spolenak, Ralph
    ACTA MATERIALIA, 2009, 57 (14) : 4009 - 4021
  • [29] Evolution of ion-irradiated point defect concentration by cluster dynamics simulation
    Feng, Shuaishuai
    Lv, Shasha
    Chen, Liang
    Li, Zhengcao
    CHINESE PHYSICS B, 2021, 30 (05)
  • [30] Thermal Conductivity Enhancement in Ion-Irradiated Hydrogenated Amorphous Carbon Films
    Scott, Ethan A.
    King, Sean W.
    Jarenwattananon, Nanette N.
    Lanford, William A.
    Li, Han
    Rhodes, James
    Hopkins, Patrick E.
    NANO LETTERS, 2021, 21 (09) : 3935 - 3940