Enhancing RPL for Cognitive Radio Enabled Machine-to-Machine Networks

被引:0
|
作者
Aijaz, Adnan [1 ]
Su, Hongjia [1 ]
Aghvami, A. Hamid [1 ]
机构
[1] Kings Coll London, Inst Telecommun, London WC2R 2LS, England
关键词
RPL; LLN; cognitive radio; M2M networks;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is expected that cognitive Machine-to-Machine (M2M) communication will be indispensable in near future. Moreover, M2M networks must be Internet Protocol (IP) enabled for ubiquitous connectivity. Recently, IETF has standardized RPL (Routing Protocol for Low Power and Lossy Networks), which is expected to be the standard routing protocol for majority of M2M applications. Our objective in this paper is to enhance RPL for cognitive radio enabled M2M networks. Our enhanced protocol provides novel modifications to RPL in order to address the routing challenges in cognitive radio environments along with protecting the primary users as well as meeting the utility requirements of secondary network. The proposed protocol is evaluated through system level simulation studies.
引用
收藏
页码:2090 / 2095
页数:6
相关论文
共 50 条
  • [41] Cognitive Machine-to-Machine Communications: Visions and Potentials for the Smart Grid
    Zhang, Yan
    Yu, Rong
    Nekovee, Maziar
    Liu, Yi
    Xie, Shengli
    Gjessing, Stein
    IEEE NETWORK, 2012, 26 (03): : 6 - 13
  • [42] Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning
    Xiangwei Zhou
    Mingxuan Sun
    Geoffrey Ye Li
    Biing-Hwang (Fred) Juang
    中国通信, 2018, 15 (12) : 16 - 48
  • [43] Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning
    Zhou, Xiangwei
    Sun, Mingxuan
    Li, Geoffrey Ye
    Juang, Biing-Hwang
    CHINA COMMUNICATIONS, 2018, 15 (12) : 16 - 48
  • [44] Polarization angle diversity for highly-reliable machine-to-machine radio
    Takei, K. (Ken.takei.cb@hitachi.com), 1600, IEEE Computer Society
  • [45] Trust Me, I'm Lying: Enhancing Machine-to-Machine Trust
    Hickert, Cameron
    Tekeoglu, Ali
    Watson, Ryan
    Maurio, Joseph
    Syed, Daniel
    Chavis, Jeffrey
    Brown, Gill
    Sookoor, Tamim
    2022 13TH ACM/IEEE INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS (ICCPS 2022), 2022, : 286 - 287
  • [46] Code-expanded radio access protocol for machine-to-machine communications
    Thomsen, Henning
    Pratas, Nuno K.
    Stefanovic, Cedomir
    Popovski, Petar
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2013, 24 (04): : 355 - 365
  • [47] Polarization Angle Diversity for Highly-Reliable Machine-to-Machine Radio
    Takei, K.
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON CIRCUITS, POWER AND COMPUTING TECHNOLOGIES (ICCPCT 2013), 2013, : 825 - 828
  • [48] Energy-Efficient Interference-Aware Cognitive Machine-to-Machine Communications Underlaying Cellular Networks
    Alhussien, Nedaa
    Gulliver, T. Aaron
    IEEE ACCESS, 2022, 10 : 33932 - 33942
  • [49] SD-MAC: Spectrum Database-Driven MAC Protocol for Cognitive Machine-to-Machine Networks
    Liu, Yi
    Yu, Rong
    Pan, Miao
    Zhang, Yan
    Xie, Shengli
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (02) : 1456 - 1467
  • [50] Machine-to-Machine Communication
    Weyrich, Michael
    Schmidt, Jan-Philipp
    Ebert, Christof
    IEEE SOFTWARE, 2014, 31 (04) : 19 - 23