The Use of Anodic Oxides in Practical and Sustainable Devices for Energy Conversion and Storage

被引:17
|
作者
Santos, Janaina Soares [1 ]
Araujo, Patricia dos Santos [1 ]
Pissolitto, Yasmin Bastos [1 ]
Lopes, Paula Prenholatto [1 ]
Simon, Anna Paulla [2 ,3 ]
Sikora, Mariana de Souza [2 ,3 ]
Trivinho-Strixino, Francisco [1 ]
机构
[1] Fed Univ Sao Carlos UFSCar, Dept Phys Chem & Math, Via Joao Leme dos Santos Km 110, BR-18052780 Sorocaba, Brazil
[2] Univ Tecnol Fed Parana UTFPR, Dept Chem, Via Conhecimento Km 1, BR-85503390 Pato Branco, Brazil
[3] Midwestern Parana State Univ UNICTR, Chem Grad Program, Campus CEDETEG,Alameda Elio Antonio Dalla Vecchia, BR-85040167 Guarapuava, Brazil
基金
巴西圣保罗研究基金会;
关键词
anodic oxides; nanostructures; anodization; dye-sensitized solar cells; PEC water-splitting; fuel cell; supercapacitors; batteries;
D O I
10.3390/ma14020383
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This review addresses the main contributions of anodic oxide films synthesized and designed to overcome the current limitations of practical applications in energy conversion and storage devices. We present some strategies adopted to improve the efficiency, stability, and overall performance of these sustainable technologies operating via photo, photoelectrochemical, and electrochemical processes. The facile and scalable synthesis with strict control of the properties combined with the low-cost, high surface area, chemical stability, and unidirectional orientation of these nanostructures make the anodized oxides attractive for these applications. Assuming different functionalities, TiO2-NT is the widely explored anodic oxide in dye-sensitized solar cells, PEC water-splitting systems, fuel cells, supercapacitors, and batteries. However, other nanostructured anodic films based on WO3, CuxO, ZnO, NiO, SnO, Fe2O3, ZrO2, Nb2O5, and Ta2O5 are also explored and act as the respective active layers in several devices. The use of AAO as a structural material to guide the synthesis is also reported. Although in the development stage, the proof-of-concept of these devices demonstrates the feasibility of using the anodic oxide as a component and opens up new perspectives for the industrial and commercial utilization of these technologies.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 50 条
  • [31] Advanced Materials for Electrochemical Energy Conversion and Storage Devices
    Santos, Diogo M. F.
    Sljukic, Biljana
    MATERIALS, 2021, 14 (24)
  • [32] Energy storage and conversion in 1D devices
    Peng, Huisheng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [33] Materials and Structures for Stretchable Energy Storage and Conversion Devices
    Xie, Keyu
    Wei, Bingqing
    ADVANCED MATERIALS, 2014, 26 (22) : 3592 - 3617
  • [34] Flexible graphene devices related to energy conversion and storage
    Wang, Xiluan
    Shi, Gaoquan
    ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (03) : 790 - 823
  • [35] Nanostructured materials for electrochemical energy conversion and storage devices
    Guo, Yu-Guo
    Hu, Jin-Song
    Wan, Li-Jun
    ADVANCED MATERIALS, 2008, 20 (15) : 2878 - 2887
  • [36] Nanostructured Electrochemical Devices for Sensing, Energy Conversion and Storage
    Sunseri, Carmelo
    Cocchiara, Cristina
    Ganci, Fabrizio
    Moncada, Alessandra
    Oliveri, Roberto Luigi
    Patella, Bernardo
    Piazza, Salvatore
    Inguanta, Rosalinda
    INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY BASED INNOVATIVE APPLICATIONS FOR THE ENVIRONMENT, 2016, 47 : 43 - 48
  • [37] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [38] Nanostructured materials for electrochemical energy conversion and storage devices
    Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
    Adv Mater, 2008, 15 (2878-2887):
  • [39] Intercalation Compounds for Energy Conversion and Storage Devices: Preface
    Zaghib, K.
    Julien, C.M.
    Mantz, R.
    Abraham, K.M.
    Zheng, J.
    ECS Transactions, 2009, 16 (42):
  • [40] Integrated Devices to Realize Energy Conversion and Storage Simultaneously
    Chen, Tao
    Yang, Zhibin
    Peng, Huisheng
    CHEMPHYSCHEM, 2013, 14 (09) : 1777 - 1782