A TRAFFIC FLOW MODEL WITH NON-SMOOTH METRIC INTERACTION: WELL-POSEDNESS AND MICRO-MACRO LIMIT

被引:30
|
作者
Goatin, Paola [1 ]
Rossi, Francesco [2 ]
机构
[1] Inria Sophia Antipolis Mediterranee, Valbonne, France
[2] Aix Marseille Univ, CNRS, ENSAM, Univ Toulon,LSIS UMR 7296, F-13397 Marseille, France
基金
欧洲研究理事会;
关键词
Transport equations; non-local velocity; Wasserstein distance; macroscopic traffic flow models; micro-macro limits; WASSERSTEIN DISTANCE; SIMULATION; WAVES;
D O I
10.4310/CMS.2017.v15.n1.a12
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence and uniqueness of solutions to a transport equation modelling vehicular traffic in which the velocity field depends non-locally on the downstream traffic density via a discontinuous anisotropic kernel. The result is obtained recasting the problem in the space of probability measures equipped with the oo-Wasserstein distance. We also show convergence of solutions of a finite dimensional system, which provide a particle method to approximate the solutions to the original problem.
引用
收藏
页码:261 / 287
页数:27
相关论文
共 16 条
  • [1] On the micro-macro limit in traffic flow
    Colombo, R. M.
    Rossi, E.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2014, 131 : 217 - 235
  • [2] Global Well-Posedness for the 2D Micro-Macro Models in the Bounded Domain
    Sun, Yongzhong
    Zhang, Zhifei
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 303 (02) : 361 - 383
  • [3] Global Well-Posedness for the 2D Micro-Macro Models in the Bounded Domain
    Yongzhong Sun
    Zhifei Zhang
    Communications in Mathematical Physics, 2011, 303 : 361 - 383
  • [4] Well-posedness theory of an inhomogeneous traffic flow model
    Li, T
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2002, 2 (03): : 401 - 414
  • [5] Well-posedness of the Dirichlet problem for the non-linear diffusion equation in non-smooth domains
    Abdulla, UG
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (01) : 247 - 265
  • [6] Two-phase flows: Non-smooth well posedness and the compressible to incompressible limit
    Colombo, Rinaldo M.
    Schleper, Veronika
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2195 - 2213
  • [7] WELL-POSEDNESS AND FINITE VOLUME APPROXIMATIONS OF THE LWR TRAFFIC FLOW MODEL WITH NON-LOCAL VELOCITY
    Goatin, Paola
    Scialanga, Sheila
    NETWORKS AND HETEROGENEOUS MEDIA, 2016, 11 (01) : 107 - 121
  • [8] Well-posedness of a non-local model for material flow on conveyor belts
    Rossi, Elena
    Weissen, Jennifer
    Goatin, Paola
    Goettlich, Simone
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (02): : 679 - 704
  • [9] Well-posedness of a non-local model for material flow on conveyor belts
    Rossi, Elena
    Weißen, Jennifer
    Goatin, Paola
    Göttlich, Simone
    ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54 (02) : 679 - 704
  • [10] Well-posedness of a conservation law with non-local flux arising in traffic flow modeling
    Blandin, Sebastien
    Goatin, Paola
    NUMERISCHE MATHEMATIK, 2016, 132 (02) : 217 - 241