Strain and damage self-sensing properties of carbon nanofibers/carbon fiber-reinforced polymer laminates

被引:26
|
作者
Wang, Yanlei [1 ,2 ]
Chang, Ruijuan [1 ,2 ]
Chen, Guipeng [1 ,2 ]
机构
[1] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian 116023, Peoples R China
[2] Dalian Univ Technol, Sch Civil Engn, Dalian, Peoples R China
来源
ADVANCES IN MECHANICAL ENGINEERING | 2017年 / 9卷 / 02期
关键词
Carbon nanofibers; carbon fiber-reinforced polymer laminates; resistance; self-sensing; strain; damage; ELECTRICAL-PROPERTIES; MATRIX COMPOSITE; RESISTANCE; TOUGHNESS; EPOXY;
D O I
10.1177/1687814016688641
中图分类号
O414.1 [热力学];
学科分类号
摘要
Unidirectional fiber-reinforced composites of "plain'' carbon fiber-reinforced polymer laminates and carbon nanofibers modified carbon fiber-reinforced polymer laminates were prepared based on the manufacture of the epoxy resin modified with various contents of carbon nanofibers. The carbon nanofibers-modified epoxy matrix and carbon fiberreinforced polymer laminates specimens were subject to constant amplitude cyclic tensile loading, quasi-static tension loading, and incremental cyclic tension loading while the values of their electrical resistance were monitored through electrical resistance technique. Resistance-change curves of carbon nanofibers/carbon fiber-reinforced polymer laminates indicated the changes in conductive percolation networks formed by carbon fibers or carbon nanofibers. These changes can identify the complex damage modes and the loss of mechanical integrity in laminates. The changes in resistance of specimens showed a nearly linear correlation with the strain, so the damage process of the carbon fiberreinforced polymer laminates can be self-sensed according to the resistance-change curves. In addition, uniformly dispersed carbon nanofibers formed a network that spans the whole insulation area, which improved their self-sensing property of strain sensitivity without compromising the mechanical properties of the carbon fiber-reinforced polymer laminates. This technology can achieve the quantitative strain and damage self-sensing properties of nano-reinforced composites without any additional sensor, and it is bound to be a promising method for in situ health monitoring.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Carbon fiber-reinforced cement as a strain-sensing coating
    Wen, SH
    Chung, DDL
    CEMENT AND CONCRETE RESEARCH, 2001, 31 (04) : 665 - 667
  • [22] Strain-sensing characteristics of carbon fiber-reinforced cement
    Wen, S
    Chung, DDL
    ACI MATERIALS JOURNAL, 2005, 102 (04) : 244 - 248
  • [23] Carbon Fiber-Reinforced Cementitious Composites for Tensile Strain Sensing
    Azhari, Fae
    Banthia, Nemkumar
    ACI MATERIALS JOURNAL, 2017, 114 (01) : 129 - 136
  • [24] Experimental Investigation into the Mechanical and Piezoresistive Sensing Properties of Recycled Carbon-Fiber-Reinforced Polymer Composites for Self-Sensing Applications
    Kim, Bum-Jun
    Nam, Il-Woo
    POLYMERS, 2024, 16 (17)
  • [25] Strain Sensing in Fiber-Reinforced Polymer Laminates Using Embedded Fiber Bragg Grating Sensor
    Basu, Mainak
    Ghorai, S. K.
    FIBER AND INTEGRATED OPTICS, 2014, 33 (04) : 279 - 298
  • [26] Strength and modulus degradation of carbon fiber-reinforced polymer laminates from fiber misalignment
    Yang, XB
    Nanni, A
    Haug, S
    Sun, CL
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2002, 14 (04) : 320 - 326
  • [27] Mechanical and self-sensing properties of concrete reinforced with carbon nanofibres
    Faghih, Faezeh
    Ayoub, Ashraf S.
    ADVANCES IN CEMENT RESEARCH, 2021, 33 (03) : 97 - 113
  • [28] Self-sensing capability of ultra-high performance fiber-reinforced concrete with multiwalled carbon nanotubes
    Lee, Sang-Hoon
    Kim, Jae Hyun
    Han, Sun-Jin
    Yi, Seong-Tae
    Kim, Kang Su
    JOURNAL OF BUILDING ENGINEERING, 2024, 86
  • [29] Carbon fiber reinforced composites with self-sensing and self-healing capabilities enabled by CNT-modified nanofibers
    Wan, Wenhu
    Shen, Rulin
    Tang, Juntao
    Xu, Yangbo
    Zou, Xiangfu
    Guo, Haibo
    POLYMER COMPOSITES, 2024, 45 (08) : 7301 - 7315
  • [30] Effect of Using Carbon Nanotubes on ILSS of Glass Fiber-Reinforced Polymer Laminates
    S. K. Chaudhary
    K. K. Singh
    R. Venugopal
    Transactions of the Indian Institute of Metals, 2018, 71 : 3029 - 3036