Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings

被引:191
|
作者
Yu, Liang [1 ,2 ,3 ]
Sun, Yi [4 ]
Xu, Zhanbo [3 ]
Shen, Chao [3 ]
Yue, Dong [2 ,5 ]
Jiang, Tao [6 ]
Guan, Xiaohong [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Artificial Intelligence, Nanjing 210003, Peoples R China
[3] Xi An Jiao Tong Univ, Key Lab Intelligent Networks & Network Secur, Minist Educ, Xian 710049, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Coll Internet Things, Nanjing 210003, Peoples R China
[5] Nanjing Univ Posts & Telecommun, Coll Automat, Inst Adv Technol, Nanjing 210003, Peoples R China
[6] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Buildings; Air quality; Atmospheric modeling; Temperature; Heuristic algorithms; Machine learning; Fans; Commercial buildings; HVAC systems; energy cost; multi-zone coordination; random occupancy; thermal comfort; indoor air quality comfort; multi-agent deep reinforcement learning; DEMAND RESPONSE; ENERGY; SYSTEMS; SMART; MODEL; OPTIMIZATION; PRICE;
D O I
10.1109/TSG.2020.3011739
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In commercial buildings, about 40%-50% of the total electricity consumption is attributed to Heating, Ventilation, and Air Conditioning (HVAC) systems, which places an economic burden on building operators. In this paper, we intend to minimize the energy cost of an HVAC system in a multi-zone commercial building with the consideration of random zone occupancy, thermal comfort, and indoor air quality comfort. Due to the existence of unknown thermal dynamics models, parameter uncertainties (e.g., outdoor temperature, electricity price, and number of occupants), spatially and temporally coupled constraints associated with indoor temperature and CO2 concentration, a large discrete solution space, and a non-convex and non-separable objective function, it is very challenging to achieve the above aim. To this end, the above energy cost minimization problem is reformulated as a Markov game. Then, an HVAC control algorithm is proposed to solve the Markov game based on multi-agent deep reinforcement learning with attention mechanism. The proposed algorithm does not require any prior knowledge of uncertain parameters and can operate without knowing building thermal dynamics models. Simulation results based on real-world traces show the effectiveness, robustness and scalability of the proposed algorithm.
引用
收藏
页码:407 / 419
页数:13
相关论文
共 50 条
  • [31] Sparse communication in multi-agent deep reinforcement learning
    Han, Shuai
    Dastani, Mehdi
    Wang, Shihan
    NEUROCOMPUTING, 2025, 625
  • [32] Multi-Agent Deep Reinforcement Learning with Human Strategies
    Thanh Nguyen
    Ngoc Duy Nguyen
    Nahavandi, Saeid
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2019, : 1357 - 1362
  • [33] Cooperative Exploration for Multi-Agent Deep Reinforcement Learning
    Liu, Iou-Jen
    Jain, Unnat
    Yeh, Raymond A.
    Schwing, Alexander G.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [34] Competitive Evolution Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Chen, Yiting
    Li, Jie
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [35] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    IEEE ACCESS, 2020, 8 : 119000 - 119009
  • [36] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722
  • [37] Multi-Agent Deep Reinforcement Learning for Walker Systems
    Park, Inhee
    Moh, Teng-Sheng
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 490 - 495
  • [38] Action Markets in Deep Multi-Agent Reinforcement Learning
    Schmid, Kyrill
    Belzner, Lenz
    Gabor, Thomas
    Phan, Thomy
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 240 - 249
  • [39] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    IEEE Access, 2020, 8 : 119000 - 119009
  • [40] Multi-Agent Deep Reinforcement Learning in Vehicular OCC
    Islam, Amirul
    Musavian, Leila
    Thomos, Nikolaos
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,