A seed method for solving nonsymmetric linear systems with multiple right-hand sides

被引:7
|
作者
Gu, GD [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
基金
中国国家自然科学基金;
关键词
augmented GMRES method; block method; seed method; linear systems; multiple right-hand sides;
D O I
10.1080/00207160211931
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a seed method for solving large nonsymmetric linear systems with multiple right-hand sides. The method uses a single augmented Krylov subspace corresponding to a seed system as a generator of approximations to the nonseed systems. The residual evaluate of the method is shown, and a new strategy to form a seed system which could supply information shareable among the right-hand sides is given. Numerical experiments indicate that our seed selection strategy is more efficient than two existing strategies and our method has significant time saving compared with the block GMRES method and the GMRES method with a projection process.
引用
收藏
页码:307 / 326
页数:20
相关论文
共 50 条
  • [31] A block GCROT(m, k) method for linear systems with multiple right-hand sides
    Meng, Jing
    Zhu, Pei-Yong
    Li, Hou-Biao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 544 - 554
  • [32] A Polynomial Preconditioned Global CMRH Method for Linear Systems with Multiple Right-Hand Sides
    Zhang, Ke
    Gu, Chuanqing
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [33] Solving linear programs with multiple right-hand sides: Pricing and ordering schemes
    Gassmann, HI
    Wallace, SW
    ANNALS OF OPERATIONS RESEARCH, 1996, 64 : 237 - 259
  • [34] Direct global Lanczos method for large linear systems with multiple right-hand sides
    S. Elgharbi
    M. Esghir
    O. Ibrihich
    B. Abouzaid
    M. Essaouini
    S. El Hajji
    Afrika Matematika, 2020, 31 : 57 - 69
  • [35] Solving linear programs with multiple right-hand sides: Pricing and ordering schemes
    Gassmann, H. I.
    Wallace, S. W.
    Annals of Operations Research, 1996, (64):
  • [36] Direct global Lanczos method for large linear systems with multiple right-hand sides
    Elgharbi, S.
    Esghir, M.
    Ibrihich, O.
    Abouzaid, B.
    Essaouini, M.
    El Hajji, S.
    AFRIKA MATEMATIKA, 2020, 31 (01) : 57 - 69
  • [37] RESTARTING THE NONSYMMETRIC LANCZOS ALGORITHM FOR EIGENVALUES AND LINEAR EQUATIONS INCLUDING MULTIPLE RIGHT-HAND SIDES
    Morgan, Ronald B.
    Nicely, Dywayne A.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05): : 3037 - 3056
  • [39] Oblique projection methods for linear systems with multiple right-hand sides
    Jbilou, K
    Sadok, H
    Tinzefte, A
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 20 : 119 - 138
  • [40] A block version of BiCGSTAB for linear systems with multiple right-hand sides
    El Guennouni, A
    Jbilou, K
    Sadok, H
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2003, 16 : 129 - 142