Translational diffusion of fluorescent probes on a sphere: Monte Carlo simulations, theory, and fluorescence anisotropy experiment

被引:46
|
作者
Krishna, MMG
Das, R
Periasamy, N
Nityananda, R
机构
[1] Tata Inst Fundamental Res, Dept Chem Sci, Colaba 400005, Mumbai, India
[2] Raman Res Inst, Bangalore 560080, Karnataka, India
来源
JOURNAL OF CHEMICAL PHYSICS | 2000年 / 112卷 / 19期
关键词
D O I
10.1063/1.481453
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Translational diffusion of fluorescent molecules on curved surfaces (micelles, vesicles, and proteins) depolarizes the fluorescence. A Monte Carlo simulation method was developed to obtain the fluorescence anisotropy decays for the general case of molecular dipoles tilted at an angle alpha to the surface normal. The method is used to obtain fluorescence anisotropy decay due to diffusion of tilted dipoles on a spherical surface, which matched well with the exact solution for the sphere. The anisotropy decay is a single exponential for alpha=0 degrees, a double exponential for alpha=90 degrees, and three exponentials for intermediate angles. The slower decay component(s) for alpha not equal 0 arise due to the geometric phase factor. Although the anisotropy decay equation contains three exponentials, there are only two parameters, namely alpha and the rate constant, D-tr/R-2, where D-tr is the translational diffusion coefficient and R is the radius of the sphere. It is therefore possible to determine the orientation angle and translational diffusion coefficient from the experimental fluorescence anisotropy data. This method was applied in interpreting the fluorescence anisotropy decay of Nile red in SDS micelles. It is necessary, however, to include two other independent mechanisms of fluorescence depolarization for molecules intercalated in micelles. These are the wobbling dynamics of the molecule about the molecular long axis, and the rotation of the spherical micelle as a whole. The fitting of the fluorescence anisotropy decay to the full equation gave the tilt angle of the molecular dipoles to be 1 +/- 2 degrees and the translational diffusion coefficient to be 1.3 +/- 0.1x10(-10) m(2)/s. (C) 2000 American Institute of Physics. [S0021- 9606(00)51619-5].
引用
收藏
页码:8502 / 8514
页数:13
相关论文
共 50 条
  • [41] Monte Carlo method for simulations of adsorbed atom diffusion on a surface
    Liu, Y. H.
    Neyts, E.
    Bogaerts, A.
    DIAMOND AND RELATED MATERIALS, 2006, 15 (10) : 1629 - 1635
  • [42] Optimizing the functional diffusion map using Monte Carlo simulations
    Reischauer, Carolin
    Gutzeit, Andreas
    Vorburger, Robert S.
    Froehlich, Johannes M.
    Binkert, Christoph A.
    Boesiger, Peter
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2012, 36 (04) : 1002 - 1009
  • [43] Time step bias improvement in diffusion Monte Carlo simulations
    Mella, M
    Morosi, G
    Bressanini, D
    PHYSICAL REVIEW E, 2000, 61 (02): : 2050 - 2057
  • [44] Monte Carlo simulations of photon diffusion in time and frequency domains
    Kuzmin, V. L.
    Valkov, A. Yu
    Oskirko, A. D.
    Zubkov, L. A.
    2016 INTERNATIONAL CONFERENCE LASER OPTICS (LO), 2016,
  • [45] Monte Carlo simulations of bosonic reaction-diffusion systems
    Park, SC
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [46] Kinetic Monte Carlo Simulations of the loading dependence of diffusion in zeolites
    Krishna, R
    van Baten, JM
    CHEMICAL ENGINEERING & TECHNOLOGY, 2005, 28 (02) : 160 - 167
  • [47] Diffusion and exchange of adsorbed polymers studied by Monte Carlo simulations
    Wolterink, JK
    Barkema, GT
    Stuart, MAC
    MACROMOLECULES, 2005, 38 (05) : 2009 - 2014
  • [48] Quantum Hall fluids on the Haldane sphere: A diffusion Monte Carlo study
    Melik-Alaverdian, V
    Bonesteel, NE
    Ortiz, G
    PHYSICAL REVIEW LETTERS, 1997, 79 (26) : 5286 - 5289
  • [49] Practical Diffusion Monte Carlo Simulations for Large Noncovalent Systems
    Hongo, Kenta
    Maezono, Ryo
    RECENT PROGRESS IN QUANTUM MONTE CARLO, 2016, 1234 : 127 - 143
  • [50] Electrolyte clusters as hydrogen sponges: diffusion Monte Carlo simulations
    Zane, A. R.
    Curotto, E.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (42) : 26094 - 26101