Moduli of metaplectic bundles on curves and theta-sheaves

被引:15
|
作者
Lysenko, Sergey [1 ]
机构
[1] Univ Paris 06, Inst Math, F-75013 Paris, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2006年 / 39卷 / 03期
关键词
D O I
10.1016/j.ansens.2006.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a geometric interpretation of the Weil representation of the metaplectic group, placing it in the framework of the geometric Langlands program. For a smooth projective curve X we introduce an algebraic stack Bun(G) of metaplectic bundles on X. It also has a local version Gr(G), which is a gerbe over the affine Grassmanian of G. We define a categorical version of the (nonramified) Hecke algebra of the metaplectic group. This is a category Sph(Gr(G)) of certain perverse sheaves on Gr(G), which act on Bun(G) by Hecke operators. A version of the Satake equivalence is proved describing Sph(Gr(G)) as a tensor category. Further, we construct a perverse sheaf on Bun(G) corresponding to the Weil representation and show that it is a Hecke eigen-sheaf with respect to Sph(Gr(G)). (c) 2006 Elsevier Masson SAS.
引用
收藏
页码:415 / 466
页数:52
相关论文
共 50 条