SOBOLEV'S INEQUALITY FOR RIESZ POTENTIALS OF FUNCTIONS IN NON-DOUBLING MORREY SPACES

被引:0
|
作者
Mizuta, Yoshihiro [1 ]
Shimomura, Tetsu [2 ]
Sobukawa, Takuya [3 ]
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Math, Higashihiroshima 7398521, Japan
[2] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
[3] Okayama Univ, Fac Educ, Dept Math Educ, Tsushima 7008530, Japan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our aim in this paper is to give Sobolev's inequality and Trudinger exponential integrability for Riesz potentials of functions in non-doubling Morrey spaces.
引用
收藏
页码:255 / 271
页数:17
相关论文
共 50 条
  • [31] Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (04) : 1201 - 1217
  • [32] Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces
    Yoshihiro Mizuta
    Tetsu Shimomura
    Czechoslovak Mathematical Journal, 2023, 73 : 1201 - 1217
  • [33] Sharp maximal inequalities and commutators on Morrey spaces with non-doubling measures
    Sawano, Yoshihiro
    Tanaka, Hitoshi
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (04): : 1091 - 1112
  • [34] Linear and sublinear operators on generalized Morrey spaces with non-doubling measures
    Guliyev, Vagif
    Sawano, Yoshihiro
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (03): : 303 - 327
  • [35] An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces L1, ν, β(G)
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    HIROSHIMA MATHEMATICAL JOURNAL, 2008, 38 (03) : 425 - 436
  • [36] SOBOLEV EMBEDDINGS FOR RIESZ POTENTIALS OF FUNCTIONS IN MORREY SPACES L1,ν, β1,β2(Rn)
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (04): : 1399 - 1414
  • [37] Sobolev Embeddings for Generalized Riesz Potentials of Functions in Morrey Spaces L(1,φ)(G) over Nondoubling Measure Spaces
    Sawano, Yoshihiro
    Shimomura, Tetsu
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [38] A WEAK POINCARE-SOBOLEV INEQUALITY FOR FUNCTIONS IN MORREY SPACES
    Essoh, Modeste
    Fofana, Ibrahim
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (02): : 215 - 227
  • [39] A non-doubling Trudinger inequality
    Gogatishvili, A
    Koskela, P
    STUDIA MATHEMATICA, 2005, 170 (02) : 113 - 119
  • [40] On Morrey's inequality in Sobolev-Slobodeckii spaces
    Brasco, Lorenzo
    Prinari, Francesca
    Sk, Firoj
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (09)