Atlas-based segmentation technique incorporating inter-observer delineation uncertainty for whole breast

被引:7
|
作者
Bell, L. R. [1 ,2 ,3 ,4 ]
Dowling, J. A. [5 ]
Pogson, E. M. [1 ,2 ,3 ,4 ,7 ]
Metcalfe, P. [1 ,2 ,3 ,4 ]
Holloway, L. [1 ,2 ,3 ,4 ,6 ,7 ]
机构
[1] Univ Wollongong, Ctr Med Radiat Phys, Wollongong, NSW, Australia
[2] Liverpool Canc Therapy Ctr, Liverpool, Merseyside, England
[3] Macarthur Canc Therapy Ctr, Liverpool, Merseyside, England
[4] Ingham Inst, Liverpool, Merseyside, England
[5] CSIRO, Australian Hlth Res Ctr E, Canberra, ACT, Australia
[6] Univ New South Wales, SWSCS, Sydney, NSW, Australia
[7] Univ Sydney, Inst Med Phys, Sydney, NSW, Australia
关键词
RADIATION; PROSTATE;
D O I
10.1088/1742-6596/777/1/012002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Accurate, efficient auto-segmentation methods are essential for the clinical efficacy of adaptive radiotherapy delivered with highly conformal techniques. Current atlas based auto-segmentation techniques are adequate in this respect, however fail to account for inter-observer variation. An atlas-based segmentation method that incorporates inter-observer variation is proposed. This method is validated for a whole breast radiotherapy cohort containing 28 CT datasets with CTVs delineated by eight observers. To optimise atlas accuracy, the cohort was divided into categories by mean body mass index and laterality, with atlas' generated for each in a leave-one-out approach. Observer CTVs were merged and thresholded to generate an auto-segmentation model representing both inter-observer and inter-patient differences. For each category, the atlas was registered to the left-out dataset to enable propagation of the auto-segmentation from atlas space. Auto-segmentation time was recorded. The segmentation was compared to the gold-standard contour using the dice similarity coefficient (DSC) and mean absolute surface distance (MASD). Comparison with the smallest and largest CTV was also made. This atlas-based auto-segmentation method incorporating inter-observer variation was shown to be efficient (<4 min) and accurate for whole breast radiotherapy, with good agreement (DSC>0.7, MASD<9.3 mm) between the auto-segmented contours and CTV volumes.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Inter-Observer variability in MRI-based target volume delineation of uveal melanoma
    Beenakker, Jan-Willem
    Jaarsma-Coes, Myriam
    Klaassen, Lisa
    Verbist, Berit
    Vu, Khanh
    Klaver, Yvonne
    Rodrigues, Myra
    Nabarro, Claire
    Luyten, Gre
    van Herk, Marcel
    Rasch, Coen
    ACTA OPHTHALMOLOGICA, 2022, 100
  • [22] Inter-Observer Variability in MR-Based Target Volume Delineation of Uveal Melanoma
    Jaarsma-Coes, Myriam G.
    Klaassen, Lisa
    Verbist, Berit M.
    Vu, T. H. Khanh
    Klaver, Yvonne L. B.
    Rodrigues, Myra F.
    Nabarro, Claire
    Luyten, Gregorius P. M.
    Rasch, Coen R. N.
    van Herk, Marcel
    Beenakker, Jan-Willem M.
    ADVANCES IN RADIATION ONCOLOGY, 2023, 8 (03)
  • [23] Inter-observer variability in MR-based target volume delineation of uveal melanoma
    Klaassen, L.
    Jaarsma-Coes, M.
    Verbist, B.
    Vu, K.
    Klaver, Y.
    Rodrigues, M.
    Ferreira, T.
    Nabarro, C.
    Luyten, G.
    Rasch, C.
    van Herk, M.
    Beenakker, J.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S166 - S167
  • [24] Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches
    Gubern-Merida, Albert
    Kallenberg, Michiel
    Marti, Robert
    Karssemeijer, Nico
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT II, 2012, 7511 : 371 - 378
  • [25] INTER-OBSERVER COMPARISON OF BREAST SEROMA DELINEATION BETWEEN CLINICAL SPECIALIST RADIATION THERAPIST AND RADIATION ONCOLOGIST
    Lee, G.
    Fyles, A.
    Cho, J.
    Easson, A.
    Fenkell, L.
    Harnett, N.
    Manchul, L.
    Tran, P.
    Wang, T.
    Dinniwell, R.
    RADIOTHERAPY AND ONCOLOGY, 2010, 96 : S28 - S28
  • [26] Clinical evaluation of deep learning and atlas-based auto-segmentation for organs at risk delineation
    Yamauchi, Ryohei
    Itazawa, Tomoko
    Kobayashi, Takako
    Kashiyama, Shiho
    Akimoto, Hiroyoshi
    Mizuno, Norifumi
    Kawamori, Jiro
    MEDICAL DOSIMETRY, 2024, 49 (03) : 167 - 176
  • [27] INTER-OBSERVER VARIABILITY OF GTV DELINEATION BASED ON LUNG MRI: IMPACT OF RADIOLOGIST LED WORKSHOP
    Kumar, Shivani
    Holloway, Lois C.
    Moses, Daniel
    Vinod, Shalini
    JOURNAL OF THORACIC ONCOLOGY, 2013, 8 : S533 - S533
  • [28] Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours
    Li, Dengwang
    Liu, Li
    Chen, Jinhu
    Li, Hongsheng
    Yin, Yong
    Ibragimov, Bulat
    Xing, Lei
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (01): : 272 - 288
  • [29] Multi-class Probabilistic Atlas-Based Segmentation Method in Breast MRI
    Gubern-Merida, Albert
    Kallenberg, Michiel
    Marti, Robert
    Karssemeijer, Nico
    PATTERN RECOGNITION AND IMAGE ANALYSIS: 5TH IBERIAN CONFERENCE, IBPRIA 2011, 2011, 6669 : 660 - 667
  • [30] Atlas-based segmentation for delineating the locoregional node levels during breast radiotherapy
    Pirson, C.
    Nguyen, P. V.
    Baiwir, M.
    Coucke, P. A.
    Lakosi, F.
    Gulyban, A.
    RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S568 - S568