Confining Silicon Nanoparticles within Freestanding Multichannel Carbon Fibers for High-Performance Li-Ion Batteries

被引:23
|
作者
Chen, Xiao [1 ]
Hu, Pei [2 ]
Xiang, Jingwei [2 ]
Zhang, Renyuan [1 ]
Huang, Yunhui [1 ,2 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Shanghai Key Lab R&D & Applicat Metall Funct Mat, Inst New Energy Vehicles, Shanghai 201804, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-ion batteries; multichannel structure; Si-based anodes; freestanding; electrospinning; nanofibers; HIGH-CAPACITY; HIGH-ENERGY; LITHIUM; ANODE; GRAPHENE; NANOWIRES; SI; NANOCOMPOSITE; ELECTRODES; NANOTUBES;
D O I
10.1021/acsaem.9b00898
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the properties of high specific capacity and low charge potential, silicon has been considered as one of the most promising candidates to replace the commercial graphite anode. However, the application of the silicon-based anode has been restricted by poor electronic conductivity and tremendous volume variation during its lithiation/delithiation, which leads to an unstable solid electrolyte interphase (SEI) and more side-reactions as well. To solve those challenges, herein, we synthesize multichannel carbon fibers (MC-CNFs) via a facile electrospinning-carbonization method and use it as a freestanding host for silicon nanoparticles (Si NPs). The Si NPs are distributed in the MC-CNFs to buffer their volumetric stresses and to stabilize the SEI layers, while the interconnected structure of the carbon fibers can effectively increase the conductivity of the composite electrodes. On fabricating a coin-type cell, the MC-CNF confined Si NP (Si@MC-CNFs) anode with an initial capacity of 1400 mAh g(-1) and an initial Coulombic efficiency (ICE) of 87% delivers good cycle stability and rate performance.
引用
收藏
页码:5214 / 5218
页数:9
相关论文
共 50 条
  • [21] FeP@C Nanotube Arrays Grown on Carbon Fabric as a Low Potential and Freestanding Anode for High-Performance Li-Ion Batteries
    Xu, Xijun
    Liu, Jun
    Liu, Zhengbo
    Wang, Zhuosen
    Hu, Renzong
    Liu, Jiangwen
    Ouyang, Liuzhang
    Zhu, Min
    SMALL, 2018, 14 (30)
  • [22] Graphene caging silicon nanoparticles anchored on graphene sheets for high performance Li-ion batteries
    Han, Xin-Yao
    Zhao, Dong-Lin
    Meng, Wen-Jie
    Yang, Hui-Xian
    Zhao, Min
    Duan, Ya-Jing
    Tian, Xin-Min
    APPLIED SURFACE SCIENCE, 2019, 484 : 11 - 20
  • [23] High-performance silicon from quartz product waste as an anode material for Li-ion batteries
    Pan, Wenhao
    Cai, Xiaolan
    Yang, Changjiang
    Zhou, Lei
    CERAMICS INTERNATIONAL, 2022, 48 (13) : 19412 - 19423
  • [24] Silicon diphosphide-CNT composite anode material for high-performance Li-ion batteries
    Park, Byung Hoon
    Roh, Ha-Kyung
    Haghighat-Shishavan, Safa
    Choi, Hun Seok
    Kim, Kwang-Bum
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [25] A scalable synthesis of N-doped Si nanoparticles for high-performance Li-ion batteries
    Han, Ying
    Lin, Ning
    Qian, Yuying
    Zhou, Jianbin
    Tian, Jie
    Zhu, Yongchun
    Qian, Yitai
    CHEMICAL COMMUNICATIONS, 2016, 52 (19) : 3813 - 3816
  • [26] Embedding the high entropy alloy nanoparticles into carbon matrix toward high performance Li-ion batteries
    Wei, Yaqing
    Liu, Xuhao
    Yao, Runzhe
    Qian, Jiayao
    Yin, Yiyi
    Li, De
    Chen, Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 938
  • [27] A Macromolecule Cathode for High-Performance Li-Ion and Na-Ion Batteries
    Hu, Jiahui
    Tang, Wu
    Ma, Huilin
    Fan, Kexin
    Li, Wenjun
    Fan, Cong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (11) : 4576 - 4586
  • [28] Co0.85Se nanosheet anchored on carbon fibers as anode materials for high-performance flexible Li-ion batteries
    Huang Yanan
    Zhang Ze
    Wang Minji
    Tu Chuanbao
    Huang Mouzhi
    Cai Jianxin
    Yang Zhenyu
    Yu Ji
    CHEMICAL PHYSICS LETTERS, 2021, 783
  • [29] A benign strategy toward mesoporous carbon coated Sb nanoparticles: A high-performance Li-ion/Na-ion batteries anode
    Dashairya, Love
    Chaturvedi, Vikash
    Kumar, Abhishek
    Mohanta, Tandra Rani
    Shelke, Manjusha
    Saha, Partha
    SOLID STATE IONICS, 2023, 396
  • [30] Graphene based magnetite carbon nanofiber composites as anodes for high-performance Li-ion batteries
    Rosaiah, Pitcheri
    Niyitanga, Theophile
    Sambasivam, Sangaraju
    Kim, Haekyoung
    NEW JOURNAL OF CHEMISTRY, 2022, 47 (01) : 482 - 490