Confining Silicon Nanoparticles within Freestanding Multichannel Carbon Fibers for High-Performance Li-Ion Batteries

被引:23
|
作者
Chen, Xiao [1 ]
Hu, Pei [2 ]
Xiang, Jingwei [2 ]
Zhang, Renyuan [1 ]
Huang, Yunhui [1 ,2 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Shanghai Key Lab R&D & Applicat Metall Funct Mat, Inst New Energy Vehicles, Shanghai 201804, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-ion batteries; multichannel structure; Si-based anodes; freestanding; electrospinning; nanofibers; HIGH-CAPACITY; HIGH-ENERGY; LITHIUM; ANODE; GRAPHENE; NANOWIRES; SI; NANOCOMPOSITE; ELECTRODES; NANOTUBES;
D O I
10.1021/acsaem.9b00898
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the properties of high specific capacity and low charge potential, silicon has been considered as one of the most promising candidates to replace the commercial graphite anode. However, the application of the silicon-based anode has been restricted by poor electronic conductivity and tremendous volume variation during its lithiation/delithiation, which leads to an unstable solid electrolyte interphase (SEI) and more side-reactions as well. To solve those challenges, herein, we synthesize multichannel carbon fibers (MC-CNFs) via a facile electrospinning-carbonization method and use it as a freestanding host for silicon nanoparticles (Si NPs). The Si NPs are distributed in the MC-CNFs to buffer their volumetric stresses and to stabilize the SEI layers, while the interconnected structure of the carbon fibers can effectively increase the conductivity of the composite electrodes. On fabricating a coin-type cell, the MC-CNF confined Si NP (Si@MC-CNFs) anode with an initial capacity of 1400 mAh g(-1) and an initial Coulombic efficiency (ICE) of 87% delivers good cycle stability and rate performance.
引用
收藏
页码:5214 / 5218
页数:9
相关论文
共 50 条
  • [1] Deposition of silver nanoparticles into silicon/carbon composite as a high-performance anode material for Li-ion batteries
    Xianhua Hou
    Miao Zhang
    Jiyun Wang
    Shejun Hu
    Xiang Liu
    Journal of Solid State Electrochemistry, 2015, 19 : 3595 - 3604
  • [2] Deposition of silver nanoparticles into silicon/carbon composite as a high-performance anode material for Li-ion batteries
    Hou, Xianhua
    Zhang, Miao
    Wang, Jiyun
    Hu, Shejun
    Liu, Xiang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (12) : 3595 - 3604
  • [3] Amorphous GaN@Cu Freestanding Electrode for High-Performance Li-Ion Batteries
    Ni, Shibing
    Huang, Peng
    Chao, Dongliang
    Yuan, Guodong
    Zhang, Lichun
    Zhao, Fengzhou
    Li, Jinmin
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (35)
  • [4] A high-performance hard carbon for Li-ion batteries and supercapacitors application
    Ni, Jiangfeng
    Huang, Youyuan
    Gao, Lijun
    JOURNAL OF POWER SOURCES, 2013, 223 : 306 - 311
  • [5] Porous carbon with the synergistic effect of cellulose fibers and MOFs as the anode for high-performance Li-ion batteries
    Zhang, Chaoqun
    He, Qi
    Luo, Wenbin
    Du, Jian
    Tao, Yehan
    Lu, Jie
    Cheng, Yi
    Wang, Haisong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 257
  • [6] Encapsulation and networking of silicon nanoparticles using amorphous carbon and graphite for high performance Li-ion batteries
    Parekh, Mihit H.
    Parikh, Vihang P.
    Kim, Patrick J.
    Misra, Shikhar
    Qi, Zhimin
    Wang, Haiyan
    Pol, Vilas G.
    CARBON, 2019, 148 : 36 - 43
  • [7] Design of hierarchical buffer structure for silicon/carbon composite as a high-performance Li-ion batteries anode
    Liu, Zetao
    Du, Juntao
    Jia, Huina
    Wang, Wenchao
    Zhang, Minxin
    Ma, Jiangkai
    Nie, Yi
    Liu, Tianqing
    Song, Kedong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (06) : 3002 - 3015
  • [8] Design of hierarchical buffer structure for silicon/carbon composite as a high-performance Li-ion batteries anode
    Zetao Liu
    Juntao Du
    Huina Jia
    Wenchao Wang
    Minxin Zhang
    Jiangkai Ma
    Yi Nie
    Tianqing Liu
    Kedong Song
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 3002 - 3015
  • [9] Bi nanoparticles in situ encapsulated by carbon film as high-performance anode materials for Li-ion batteries
    Jun Yang
    Jiahui Xian
    Qinglin Liu
    Yamei Sun
    Guangqin Li
    Journal of Energy Chemistry , 2022, (06) : 524 - 530
  • [10] Bi nanoparticles in situ encapsulated by carbon film as high-performance anode materials for Li-ion batteries
    Yang, Jun
    Xian, Jiahui
    Liu, Qinglin
    Sun, Yamei
    Li, Guangqin
    JOURNAL OF ENERGY CHEMISTRY, 2022, 69 : 524 - 530