Effect of typhaneoside on ventricular remodeling and regulation of PI3K/Akt/mTOR pathway

被引:15
|
作者
Zhang, X. [1 ]
Yang, K. [2 ]
Zhang, H. [1 ]
Dong, W. [1 ]
Peng, W. [1 ]
Zhao, Y. [1 ]
机构
[1] 1 Hosp PLA, Dept Cardiol & Nephrol, Lanzhou 730030, Peoples R China
[2] Lanzhou Univ, Dept Cardiac Surg Intens Care Unit, Hosp 2, Lanzhou, Peoples R China
关键词
Traditional Chinese medicine; Heart failure; Myocardial infarction; Autophagy; Transduction; AUTOPHAGY;
D O I
10.1007/s00059-019-4819-2
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background This study aimed to investigate the effect of typhaneoside on ventricular remodeling and regulation of the PI3K/Akt/mTOR autophagy transduction pathway in rats with heart failure after myocardial infarction. Methods The effects of typhaneoside on the general condition of rats were observed in vivo using a rat model of heart failure after myocardial infarction had been established. The expression of serum N-terminal pro-brain natriuretic peptide (NT-proBNP), matrix lysin 2 (ST2), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-alpha), matrix metalloproteinase 2 (MMP-2), and MMP-9 was detected via ELISA. A hypoxia/reoxygenation model was established to analyze the number and morphology of autophagosomes in vitro by transmission electron microscopy. Light chain 3 (LC3) variations were detected by immunofluorescence. Western blotting was used to assess LC3-II/LC3-I and p62 expression as well as p-Akt/Akt, p-mTOR/mTOR ratios. Results Compared with the sham group, the general condition scores of the rats in the model group decreased significantly, while the expression of serum NT-proBNP, ST2, IL-6, TNF-alpha, MMP-2, and MMP-9 increased. The number of autophagosomes in the drug-containing serum group was significantly reduced and the ratio of LC3-II/LC3-I was significantly decreased. The expression of P62 protein was increased, and the ratios of p-Akt/Akt and p-mTOR/mTOR were significantly increased. Conclusion Typhaneoside regulates IL-6 and TNF-alpha as well as MMP-2 and MMP-9 in rats with heart failure after myocardial infarction. Typhaneoside can improve cardiac morphological structure and myocardial remodeling and enhance heart function. It may mediate autophagy inhibition in the cardiomyocyte anoxia/reoxygenation (A/R) pathway through the PI3K/Akt/mTOR autophagy transduction pathway.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [41] PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma
    Li, Xiaoman
    Wu, Changjing
    Chen, Nianci
    Gu, Huadi
    Yen, Allen
    Cao, Liu
    Wang, Enhua
    Wang, Liang
    ONCOTARGET, 2016, 7 (22) : 33440 - 33450
  • [42] The PI3K/AKT/mTOR Pathway as a Therapeutic Target in Endometrial Cancer
    Slomovitz, Brian M.
    Coleman, Robert L.
    CLINICAL CANCER RESEARCH, 2012, 18 (21) : 5856 - 5864
  • [43] Interaction of ncRNAs and the PI3K/AKT/mTOR pathway: Implications for osteosarcoma
    Shao, Weilin
    Feng, Yan
    Huang, Jin
    Li, Tingyu
    Gao, Shengguai
    Yang, Yihao
    Li, Dongqi
    Yang, Zuozhang
    Yao, Zhihong
    OPEN LIFE SCIENCES, 2024, 19 (01):
  • [44] Targeting the PI3K/Akt/mTOR Pathway for Breast Cancer Therapy
    Cidado, Justin
    Park, Ben Ho
    JOURNAL OF MAMMARY GLAND BIOLOGY AND NEOPLASIA, 2012, 17 (3-4) : 205 - 216
  • [45] Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer
    Mortazavi, Motahareh
    Moosavi, Fatemeh
    Martini, Miriam
    Giovannetti, Elisa
    Firuzi, Omidreza
    CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2022, 176
  • [46] Targeting the PI3K/Akt/mTOR pathway for cancer prevention.
    Dennis, PA
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2005, 14 (11) : 2800S - 2801S
  • [47] The Role of the PI3K/AKT/mTOR Signalling Pathway in Male Reproduction
    Deng, Chun-Yan
    Lv, Mei
    Luo, Bin-Han
    Zhao, Si-Ze
    Mo, Zhong-Cheng
    Xie, Yuan-Jie
    CURRENT MOLECULAR MEDICINE, 2021, 21 (07) : 539 - 548
  • [48] The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer
    Mabuchi, Seiji
    Kuroda, Hiromasa
    Takahashi, Ryoko
    Sasano, Tomoyuki
    GYNECOLOGIC ONCOLOGY, 2015, 137 (01) : 173 - 179
  • [49] Targeting the PI3K/Akt/mTOR Pathway for Breast Cancer Therapy
    Justin Cidado
    Ben Ho Park
    Journal of Mammary Gland Biology and Neoplasia, 2012, 17 : 205 - 216
  • [50] Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors
    Welker, Mark E.
    Kulik, George
    BIOORGANIC & MEDICINAL CHEMISTRY, 2013, 21 (14) : 4063 - 4091