A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations

被引:10
|
作者
Liu, Huan [1 ]
Cheng, Aijie [1 ]
Wang, Hong [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Time-fractional diffusion equation; Variable-order; Finite volume method; Parareal; Well-posedness; SPECTRAL COLLOCATION METHOD; DIFFERENCE METHOD; NUMERICAL-METHODS; ANOMALOUS-DIFFUSION; SPACE; REGULARITY;
D O I
10.1007/s10915-020-01321-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the well-posedness and solution regularity of a variable-order time-fractional diffusion equation, which is often used to model the solute transport in complex porous media where the micro-structure of the porous media may changes over time. We show that the variable-order time-fractional diffusion equations have flexible abilities to eliminate the nonphysical singularity of the solutions to their constant-order analogues. We also present a finite volume approximation and provide its stability and convergence analysis in a weighted discrete norm. Furthermore, we develop an efficient parallel-in-time procedure to improve the computational efficiency of the variable-order time-fractional diffusion equations. Numerical experiments are performed to confirm the theoretical results and to demonstrate the effectiveness and efficiency of the parallel-in-time method.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion Equation
    Jinhong Jia
    Hong Wang
    Xiangcheng Zheng
    Journal of Scientific Computing, 2022, 91
  • [22] Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion Equation
    Jia, Jinhong
    Wang, Hong
    Zheng, Xiangcheng
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (02)
  • [23] Collocation method with Lagrange polynomials for variable-order time-fractional advection-diffusion problems
    Kumar, Saurabh
    Gupta, Vikas
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) : 1113 - 1131
  • [24] Wellposedness and smoothing properties of history-state-based variable-order time-fractional diffusion equations
    Xiangcheng Zheng
    Hong Wang
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [25] Efficient finite difference scheme for a hidden-memory variable-order time-fractional diffusion equation
    Sun L.-Y.
    Lei S.-L.
    Sun H.-W.
    Computational and Applied Mathematics, 2023, 42 (08)
  • [26] Wellposedness and smoothing properties of history-state-based variable-order time-fractional diffusion equations
    Zheng, Xiangcheng
    Wang, Hong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [27] FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME FRACTIONAL DIFFUSION EQUATION
    Sun, Hongguang
    Chen, Wen
    Li, Changpin
    Chen, Yangquan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [28] A fast method for variable-order space-fractional diffusion equations
    Jia, Jinhong
    Zheng, Xiangcheng
    Fu, Hongfei
    Dai, Pingfei
    Wang, Hong
    NUMERICAL ALGORITHMS, 2020, 85 (04) : 1519 - 1540
  • [29] A fast method for variable-order space-fractional diffusion equations
    Jinhong Jia
    Xiangcheng Zheng
    Hongfei Fu
    Pingfei Dai
    Hong Wang
    Numerical Algorithms, 2020, 85 : 1519 - 1540
  • [30] A finite difference method for elliptic equations with the variable-order fractional derivative
    Shi, Siyuan
    Hao, Zhaopeng
    Du, Rui
    NUMERICAL ALGORITHMS, 2024,