On the dynamics of generic maps on the Cantor set

被引:2
|
作者
Kupka, Jiri [1 ]
Oprocha, Piotr [1 ,2 ]
机构
[1] Natl Supercomp Ctr IT4Innovat, Inst Res & Applicat Fuzzy Modeling, 30 Dubna 22, CZ-70103 Ostrava, Czech Republic
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
Cantor set; Generic properties; Graph representation; Perturbations; TOPOLOGICAL-ENTROPY;
D O I
10.1016/j.topol.2019.05.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently Bernardes and Darji provided a very nice characterization of a residual set of maps of Cantor set in terms of covers of special type. Using their characterization, we provide a more direct description of this class. This way we are able to provide a further characterization of dynamical properties (e.g. shadowing properties, nullness) of maps in the class and further study of what features (e.g. prescribed minimal sets or the values of topological entropy) we can get by small perturbations of a given homeomorphism. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:330 / 342
页数:13
相关论文
共 50 条
  • [41] Nonarchimedean Cantor set and string
    Michel L. Lapidus
    Hùng Lũ’
    Journal of Fixed Point Theory and Applications, 2008, 3 : 181 - 190
  • [42] CLOSED IDEALS OF A(+) AND THE CANTOR SET
    ESTERLE, J
    STROUSE, E
    ZOUAKIA, F
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1994, 449 : 65 - 79
  • [43] On approximation of homeomorphisms of a Cantor set
    Medynets, Konstantin
    FUNDAMENTA MATHEMATICAE, 2007, 194 (01) : 1 - 13
  • [44] On the structure of λ-Cantor set with overlaps
    Dajani, Karma
    Kong, Derong
    Yao, Yuanyuan
    ADVANCES IN APPLIED MATHEMATICS, 2019, 108 : 97 - 125
  • [45] A FUNCTION INDUCED BY THE CANTOR SET
    LOSSERS, OP
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (08): : 745 - 747
  • [46] SPLITTING POINTS IN CANTOR SET
    PURISCH, S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A211 - A212
  • [47] A CANTOR SET WITH HYPERBOLIC COMPLEMENT
    Souto, Juan
    Stover, Matthew
    CONFORMAL GEOMETRY AND DYNAMICS, 2013, 17 : 58 - 67
  • [48] On some properties of the Cantor set
    Ganguly, DK
    Majumdar, M
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1996, 46 (03) : 553 - 557
  • [50] QUANTIFICATION AND PHASES OF A CANTOR SET
    MICHON, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (03): : 123 - 126