α-Resolution Method for Lattice-valued Horn Generalized Clauses in Lattice-valued Propositional Logic Systems

被引:3
|
作者
Xu, Weitao [1 ]
Zhang, Wenqiang [1 ]
Zhang, Dexian [1 ]
Xu, Yang [2 ]
Pan, Xiaodong [2 ]
机构
[1] Henan Univ Technol, Coll Informat Sci & Engn, Zhengzhou 450001, Peoples R China
[2] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
automated reasoning; lattice-valued logic; alpha-resolution; lattice-valued Horn g-clause; lattice implication algebra;
D O I
10.1080/18756891.2015.1129580
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an -resolution method for a set of lattice-valued Horn generalized clauses is established in lattice-valued propositional logic system L P(X ) based on lattice implication algebra. Firstly, the notions of lattice-valued Horn generalized clause, normal lattice-valued Horn generalized clause and unit lattice-valued Horn generalized clause are given in L P(X ). Then, the -resolution of two lattice-valued Horn generalized clauses is represented in L P(X ). It indicates the reasoning rules in a resolution process, which aims at deleting -resolution literals and obtaining a resolvent. Finally, we build an -resolution algorithm for a set of lattice-valued Horn generalized clauses in L P(X ). It provides a foundation for automated reasoning in lattice-valued first-order logic system and an application for designing an inference system in the field of intelligent decision support.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
  • [21] Lattice-valued modal propositional logic and its completeness
    Shi HuiXian
    Wang GuoJun
    SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (11) : 2230 - 2239
  • [22] A new lattice-valued propositional logic (I): Semantics
    Qin, KY
    Xu, Y
    COMPUTATIONAL INTELLIGENT SYSTEMS FOR APPLIED RESEARCH, 2002, : 44 - 49
  • [23] Semantic theory of finite lattice-valued propositional logic
    XiaoDong Pan
    Yang Xu
    Science China Information Sciences, 2010, 53 : 2022 - 2031
  • [24] α-resolution principle based on lattice-valued propositional logic LP(X)
    Xu, Y
    Ruan, D
    Kerre, EE
    Liu, J
    INFORMATION SCIENCES, 2000, 130 (1-4) : 195 - 223
  • [25] Semantic theory of finite lattice-valued propositional logic
    Pan XiaoDong
    Xu Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (10) : 2022 - 2031
  • [26] Semantic theory of finite lattice-valued propositional logic
    PAN XiaoDong 1
    2 Intelligent Control Development Center
    Science China(Information Sciences), 2010, 53 (10) : 2022 - 2031
  • [27] Syntax theory of finite lattice-valued propositional logic
    PAN XiaoDong
    MENG Dan
    XU Yang
    ScienceChina(InformationSciences), 2013, 56 (08) : 177 - 188
  • [28] Syntax theory of finite lattice-valued propositional logic
    Pan XiaoDong
    Meng Dan
    Xu Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (08) : 1 - 12
  • [29] α-resolution principle based on an intermediate element lattice-valued propositional logic
    Meng, D
    Xu, Y
    PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 89 - 91
  • [30] α-Minimal Resolution Principle For A Lattice-Valued Logic
    Jia, Hairui
    Xu, Yang
    Liu, Yi
    Liu, Jun
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2015, 8 (01) : 34 - 43