Vertex angles of a simplex in hyperbolic space Hn

被引:6
|
作者
Karliga, Baki [1 ]
Yakut, Atakan T.
机构
[1] Gazi Univ, Dept Math, Arts & Sci Fac, Ankara, Turkey
[2] Niode Univ, Dept Math, Arts & Sci Fac, Niode, Turkey
关键词
vertex angle; sine theorem; hyperbolic simplex;
D O I
10.1007/s10711-006-9077-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an n-simplex in H-n or S-n, we give sine theorems and their results for kth-order vertex angles which are defined in this paper. The Gram and edge matrices, and polar simplex of n-simplex in H-n or S-n are used to prove the theorems and their results.
引用
收藏
页码:49 / 58
页数:10
相关论文
共 50 条
  • [21] The Poincare Model of Hyperbolic Geometry in an Arbitrary Real Inner Product Space and an Elementary Construction of Hyperbolic Triangles with Prescribed Angles
    Schwaiger, Jens
    Gronau, Detlef
    JOURNAL OF GEOMETRY, 2009, 93 (1-2) : 146 - 163
  • [22] The sum of measures of the angles of a simplex
    Hajja M.
    Hammoudeh I.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2014, 55 (2): : 453 - 470
  • [23] Pixel cells with arbitrary vertex angles
    Son, JY
    Saveljev, VV
    Kim, KT
    Javidi, B
    OPTICAL INFORMATION SYSTEMS II, 2004, 5557 : 79 - 90
  • [24] Hypersurfaces satisfying Lrx = Rx in sphere Sn+1 or hyperbolic space Hn+1
    Yang, Biaogui
    Liu, Ximin
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (04): : 487 - 499
  • [25] The Inradius of a Hyperbolic Truncated -Simplex
    Jacquemet, Matthieu
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 51 (04) : 997 - 1016
  • [26] The size of a hyperbolic coxeter simplex
    Johnson, NW
    Kellerhals, R
    Ratcliffe, JG
    Tschantz, ST
    TRANSFORMATION GROUPS, 1999, 4 (04) : 329 - 353
  • [27] The size of a hyperbolic Coxeter simplex
    N. W. Johnson
    R. Kellerhals
    J. G. Ratcliffe
    S. T. Tschantz
    Transformation Groups, 1999, 4 : 329 - 353
  • [28] Vertex representation of hyperbolic tensor networks
    Mosko, Matej
    Polackova, Maria
    Krcmar, Roman
    Gendiar, Andrej
    PHYSICAL REVIEW E, 2025, 111 (02)
  • [29] Hyperbolic three-string vertex
    Firat, Atakan Hilmi
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
  • [30] Hyperbolic three-string vertex
    Atakan Hilmi Fırat
    Journal of High Energy Physics, 2021