Role of edge dehydrogenation in magnetization and spin transport of zigzag graphene nanoribbons with line defects

被引:5
|
作者
Zou, Dongqing [1 ]
Cui, Bin [1 ]
Fang, Changfeng [2 ]
Zhao, Wenkai [1 ]
Kong, Xiangru [1 ]
Li, Dongmei [1 ]
Zhao, Mingwen [1 ]
Liu, Desheng [1 ,2 ]
机构
[1] Shandong Univ, State Key Lab Crystal Mat, Sch Phys, Jinan 250100, Peoples R China
[2] Jining Univ, Dept Phys, Qufu 273155, Peoples R China
关键词
First-principles calculation; Graphene nanoribbons; Line defects; Edge dehydrogenation; Spin-filter effect; MAGNETORESISTANCE;
D O I
10.1016/j.orgel.2015.09.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the effects of edge dehydrogenation on magnetism and spin transport of zigzag graphene nanoribbons (ZGNRs) with line defects (558defect and 57defect) by the first-principles calculations. Results show that magnetization can be induced or strengthened obviously in 558defect-ZGNRs unterminated by hydrogen, but not for 57defect-ZGNRs. This is because a spin-polarized a edge state appears near the Fermi level and strengthens spin-splitting of energy bands at bare edges of the 558defect-ZGNRs. Moreover, compared with pristine ZGNRs, the 558defect-ZGNRs with bare edges can realize a transition from antiferromagnetic coupling to ferromagnetic coupling between both edges. In addition, the spin-filter efficiency can be effectively improved in our proposed devices by edge dehydrogenation. Our results demonstrate that the presence of sigma edge state near the Fermi level plays an important role in controlling spin transport of the graphene-based spintronic devices. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:212 / 220
页数:9
相关论文
共 50 条
  • [21] Spin negative differential resistance in edge doped zigzag graphene nanoribbons
    Wang, X.-F. (wxf@suda.edu.cn), 1600, Elsevier Ltd (68):
  • [22] Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons
    Raymond E. Blackwell
    Fangzhou Zhao
    Erin Brooks
    Junmian Zhu
    Ilya Piskun
    Shenkai Wang
    Aidan Delgado
    Yea-Lee Lee
    Steven G. Louie
    Felix R. Fischer
    Nature, 2021, 600 : 647 - 652
  • [23] Spin negative differential resistance in edge doped zigzag graphene nanoribbons
    Jiang, Chao
    Wang, Xue-Feng
    Zhai, Ming-Xing
    Carbon, 2013, 68 : 406 - 412
  • [24] The Edge Current on Zigzag Graphene Nanoribbons
    Takaki, Hirokazu
    Kobayashi, Nobuhiko
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (08)
  • [25] Spin polarization and giant magnetoresistance effect induced by magnetization in zigzag graphene nanoribbons
    Zhang, Ying-Tao
    Jiang, Hua
    Sun, Qing-feng
    Xie, X. C.
    PHYSICAL REVIEW B, 2010, 81 (16)
  • [26] Spin stiffness of graphene and zigzag graphene nanoribbons
    Rhim, Jun-Won
    Moon, Kyungsun
    PHYSICAL REVIEW B, 2009, 80 (15)
  • [27] Spin-dependent transport induced by magnetization in zigzag graphene nanoribbons coupled to one-dimensional leads
    Zhao Hua
    Zhang Xiao-Wei
    Cai Tuo
    Sang Tian
    Liu Xiao-Chun
    Liu Fang
    CHINESE PHYSICS B, 2012, 21 (01)
  • [28] Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge
    Ouyang, T.
    Chen, Y. P.
    Yang, K. K.
    Zhong, J. X.
    EPL, 2009, 88 (02)
  • [29] Electronic and Transport Properties Depending on the Edge Termination in Zigzag Graphene Nanoribbons
    Huang, Jing
    Xie, Rong
    ASIAN JOURNAL OF CHEMISTRY, 2014, 26 (05) : 1455 - 1457
  • [30] Spin-dependent transport induced by magnetization in zigzag graphene nanoribbons coupled to one-dimensional leads
    赵华
    张小伟
    蔡托
    桑田
    刘晓春
    刘芳
    Chinese Physics B, 2012, 21 (01) : 458 - 461