Computing the number of h-edge spanning forests in complete bipartite graphs

被引:0
|
作者
Stones, Rebecca J. [1 ,2 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
来源
DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE | 2014年 / 16卷 / 01期
关键词
complete bipartite graph; spanning forest; ENUMERATION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let f(m,n,h) be the number of spanning forests with h edges in the complete bipartite graph K-m,K-n. Kirchhoff's Matrix Tree Theorem implies f(m,n,m+n-1) = m(n-1)n(m-1) when m >= 1 and n >= 1, since f(m,n,m+n-1) is the number of spanning trees in K-m,K-n. In this paper, we give an algorithm for computing f(m,n,h) for general m, n, h. We implement this algorithm and use it to compute all non-zero f(m,n,h) when m <= 50 and n <= 50 in under 2 days.
引用
收藏
页码:313 / 326
页数:14
相关论文
共 50 条
  • [31] Bipartite graphs whose edge algebras are complete intersections
    Katzman, M
    JOURNAL OF ALGEBRA, 1999, 220 (02) : 519 - 530
  • [32] Edge-disjoint spanners of complete bipartite graphs
    Laforest, C
    Liestman, AL
    Shermer, TC
    Sotteau, D
    DISCRETE MATHEMATICS, 2001, 234 (1-3) : 65 - 76
  • [33] Computing the Edge Irregularity Strength of Bipartite Graphs and Wheel Related Graphs
    Ahmad, Ali
    Asim, Muhammad Ahsan
    Assiri, Basem
    Semanicova-Fenovcikova, Andrea
    FUNDAMENTA INFORMATICAE, 2020, 174 (01) : 1 - 13
  • [34] Anti-Ramsey Problems in Complete Bipartite Graphs for t Edge-Disjoint Rainbow Spanning Trees
    Yuxing Jia
    Mei Lu
    Yi Zhang
    Graphs and Combinatorics, 2021, 37 : 409 - 433
  • [35] Anti-Ramsey Problems in Complete Bipartite Graphs for t Edge-Disjoint Rainbow Spanning Trees
    Jia, Yuxing
    Lu, Mei
    Zhang, Yi
    GRAPHS AND COMBINATORICS, 2021, 37 (02) : 409 - 433
  • [36] Unbalanced spanning subgraphs in edge labeled complete graphs*
    Bessy, Stephane
    Pardey, Johannes
    Picasarri-Arrieta, Lucas
    Rautenbach, Dieter
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (01):
  • [37] ON THE NUMBER OF EDGE-COLORINGS OF REGULAR BIPARTITE GRAPHS
    SCHRIJVER, A
    DISCRETE MATHEMATICS, 1982, 38 (2-3) : 297 - 301
  • [38] On the number of irreducible coverings by edges of complete bipartite graphs
    Tomescu, I
    DISCRETE MATHEMATICS, 1996, 150 (1-3) : 453 - 456
  • [39] THE TOTAL CHROMATIC NUMBER OF NEARLY COMPLETE BIPARTITE GRAPHS
    HILTON, AJW
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 52 (01) : 9 - 19
  • [40] Radio Number of Complete Bipartite Graphs and Even Cycles
    Cui, Linlin
    Li, Feng
    2024 5TH INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE, ICTC 2024, 2024, : 122 - 127