Computing the number of h-edge spanning forests in complete bipartite graphs

被引:0
|
作者
Stones, Rebecca J. [1 ,2 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
关键词
complete bipartite graph; spanning forest; ENUMERATION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let f(m,n,h) be the number of spanning forests with h edges in the complete bipartite graph K-m,K-n. Kirchhoff's Matrix Tree Theorem implies f(m,n,m+n-1) = m(n-1)n(m-1) when m >= 1 and n >= 1, since f(m,n,m+n-1) is the number of spanning trees in K-m,K-n. In this paper, we give an algorithm for computing f(m,n,h) for general m, n, h. We implement this algorithm and use it to compute all non-zero f(m,n,h) when m <= 50 and n <= 50 in under 2 days.
引用
收藏
页码:313 / 326
页数:14
相关论文
共 50 条