Enhanced electrochemical properties and interfacial stability of poly(ethylene oxide) solid electrolyte incorporating nanostructured Li1.3Al0.3Ti1.7(PO4)3 fillers for all solid state lithium ion batteries

被引:14
|
作者
Zhao, Erqing [1 ]
Guo, Yudi [2 ]
Xin, Yuan [1 ]
Xu, Guangri [1 ]
Guo, Xiaowei [2 ]
机构
[1] Henan Inst Sci & Technol, Sch Chem & Chem Engn, Xinxiang, Henan, Peoples R China
[2] Xinxiang Univ, Sch Chem & Mat Engn, Xinxiang 453003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
all-solid-state lithium-ion batteries; composite electrolyte; Li1.3Al0.3Ti1.7(PO4)(3) nanomaterials; poly(ethylene oxide); COMPOSITE POLYMER ELECTROLYTES; CONDUCTIVITY ENHANCEMENT; LI7LA3ZR2O12; PLASTICIZER; GE;
D O I
10.1002/er.6278
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Poly(ethylene oxide) (PEO) polymer electrolyte has been regarded as a potential solid electrolyte which can be applied in all-solid-state lithium-ion batteries (ASSLIBs). Nevertheless, low electrochemical properties and poor electrolyte/Li anode interfacial stability hinder its further application. In our work, the Li1.3Al0.3Ti1.7(PO4)(3) (LATP) nanomaterials with Nasicon structure have been synthesized using a simple solvent-thermal method, followed by being embedded into PEO polymer to form LATP filled PEO solid composite electrolytes. Effects of LATP content and particle size on electrochemical performances of solid electrolytes have been studied. By adjusting the calcination temperature, the uniformly distributed Nasicon-type LATP powders with different sizes can be obtained. The electrochemical properties of PEO polymer electrolyte have been effectively enhanced by filling LATP nanoparticles. The composite electrolyte filled with 5 wt% LATP particles calcined at 850 degrees C exhibits a high ionic conductivity of 5.24x10(-4) S cm(-1) at 55 degrees C, which has a high electrochemical stability window of over 5 V versus Li/Li+ and a superior interfacial stability with Li metal. A LiFePO4/Li ASSLIB fabricated with the optimum composite electrolyte shows the excellent rate capability, and its discharge capacities at 0.2C, 0.5C, 1C, and 2C are 151.97, 151.56, 145.51, and 128.02 mAh center dot g(-1). Moreover, the discharge capacity of the cell decreases from 151.69 to 130.53 mAh center dot g(-1) after 100 charge-discharge cycles at 0.5C rate, and the corresponding capacity retention is 86.05%. These results demonstrate that LATP nanoparticles obtained via the solvent-thermal method are the alternative fillers for PEO polymer electrolyte.
引用
收藏
页码:6876 / 6887
页数:12
相关论文
共 50 条
  • [31] Isotropic negative thermal expansion of a Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte
    Ghosh, Sayan
    Sudakar, C.
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (42) : 29271 - 29277
  • [32] Field-assisted sintering of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte
    Rosenberger, Andrew
    Gao, Yu
    Stanciu, Lia
    SOLID STATE IONICS, 2015, 278 : 217 - 221
  • [33] LiF-doped Li1.3Al0.3Ti1.7(PO4)3 superionic conductors with enhanced ionic conductivity for all-solid-state lithium-ion batteries
    Chang Miao
    Zhiyan Kou
    Jieqiong Li
    Chengjin Liu
    Qiyan Chen
    Yanhong Xiang
    Wei Xiao
    Ionics, 2022, 28 : 73 - 83
  • [34] Ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with Li1.3Al0.3Ti1.7(PO4)3 salt
    Wang, YJ
    Pan, Y
    Chen, LS
    MATERIALS CHEMISTRY AND PHYSICS, 2005, 92 (2-3) : 354 - 360
  • [35] Improved the electrochemical performance between ZnO@Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and lithium metal electrode for all-solid-state lithium-ion batteries
    Li, Jieqiong
    Liu, Chengjin
    He, Manyi
    Nie, Shuqing
    Miao, Chang
    Sun, Shengwei
    Xu, Guanli
    Xiao, Wei
    ELECTROCHIMICA ACTA, 2023, 439
  • [36] High ionic conductivity Y doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Zhao, Erqing
    Guo, Yudi
    Xu, Guangri
    Yuan, Long
    Liu, Jingcheng
    Li, Xiaobo
    Yang, Li
    Ma, Jingjing
    Li, Yuanchao
    Fan, Shumin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 782 : 384 - 391
  • [37] Facile Route to Synthesize a Highly Sinterable Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte
    Luo, Changwei
    Zhao, Guoqiang
    Zhang, Mengyang
    Wu, Bin
    Hua, Qingsong
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (03) : 3289 - 3301
  • [38] Enhanced ionic conductivity of composite solid electrolyte by defective Li1.3Al0.3Ti1.7(PO4-y)3 for solid-state Li-ion batteries
    Gu, Xiujuan
    Wu, Qiwei
    Cai, Yanjun
    Wu, Yanshan
    Jiang, Qianying
    Li, Yuxiu
    Tian, Hualing
    Yao, Xiang
    Su, Zhi
    CERAMICS INTERNATIONAL, 2024, 50 (07) : 10137 - 10143
  • [39] A simple and effective method to prepare dense Li1.3Al0.3Ti1.7(PO4)3solid-state electrolyte for lithium-oxygen batteries
    Ren, Yaqi
    Deng, Hao
    Zhao, Hong
    Zhou, Zheng
    Wei, Zhaohuan
    IONICS, 2020, 26 (12) : 6049 - 6056
  • [40] Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3
    Schoen, Nino
    Gunduz, Deniz Cihan
    Yu, Shicheng
    Tempel, Hermann
    Schierholz, Roland
    Hausen, Florian
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 : 1564 - 1572