Improving the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers

被引:34
|
作者
Maruzhenko, Oleksii [1 ,2 ]
Mamunya, Yevgen [1 ]
Boiteux, Gisele [3 ]
Pusz, Slawomira [4 ]
Szeluga, Urszula [4 ]
Pruvost, Sebastien [2 ]
机构
[1] Inst Macromol Chem NAS Ukraine, 48 Kharkivske Chaussee, UA-02160 Kiev, Ukraine
[2] Univ Lyon, INSA Lyon, UMR CNRS 5223, IMP Ingn Mat Polymeres, F-69621 Villeurbanne, France
[3] Univ Lyon, Univ Lyon 1, UMR CNRS 5223, Imp Ingn Mat Polymeres, F-69622 Villeurbanne, France
[4] Polish Acad Sci, Ctr Polymer & Carbon Mat, M Curie Sklodowskiej 34, Zabrze, Poland
关键词
Polymer composites; Nanocomposites; Segregated structure; Electrical conductivity; Thermal conductivity; WEIGHT POLYETHYLENE COMPOSITES; PERCOLATION-THRESHOLD; MECHANICAL-PROPERTIES; CONDUCTIVITY; NANOTUBE; BEHAVIOR; FILLERS; PRELOCALIZATION; NANOCOMPOSITES; PERMITTIVITY;
D O I
10.1016/j.ijheatmasstransfer.2019.04.043
中图分类号
O414.1 [热力学];
学科分类号
摘要
This article presents the study of electrical and thermal properties of segregated polymer composites based on ultra-high-molecular-weight polyethylene (UHMWPE) filled with carbon fillers (nanofiller graphene (Gr), microfiller anthracite (A) and hybrid filler Gr/A). It is shown that the formation of a segregated structure with an ordered distribution of the filler leads to a high local concentration in the intergrain boundaries, which causes a lower percolation threshold. Thus, in the composite UHMWPE + A, the percolation threshold is an order of magnitude lower than for a system with a random distribution of the filler. The segregated composite with nanofiller UHMWPE + Gr provides a 14-fold lower percolation threshold than the composite with microfiller UHMWPE + A. Composite with the hybrid filler Gr/A also exhibits a low percolation threshold close to the UHMWPE + Gr. The plot of the thermal conductivity versus filler content does not show the percolation behavior and obeys the equation of the Lichtenecker. The thermal conductivity parameter lambda(f) in the segregated system is 4.4 times higher than for the uniform distribution of the filler that indicates an increased thermal transport through the filler phase located at the boundaries in the segregated structure. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
  • [31] Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites
    Jung, Jinwoo
    Kim, Jaewoo
    Uhm, Young Rang
    Jeon, Jae-Kyun
    Lee, Sol
    Lee, Hi Min
    Rhee, Chang Kyu
    THERMOCHIMICA ACTA, 2010, 499 (1-2) : 8 - 14
  • [32] Electrical and Thermal Properties of Polymer Composites Based on Polyvinylidene Fluoride
    Lebedev, S. M.
    Gefle, O. S.
    RUSSIAN PHYSICS JOURNAL, 2017, 60 (01) : 115 - 121
  • [33] Structural, Electrical and Thermal Properties of Composites Based on Conducting Polymer
    Aribou, N.
    Barnoss, S.
    El Hasnaoui, M.
    Achour, M. E.
    Costa, L. C.
    JORDAN JOURNAL OF PHYSICS, 2020, 13 (02): : 157 - 163
  • [34] Electrical and Thermal Properties of Polymer Composites Based on Polyvinylidene Fluoride
    S. M. Lebedev
    O. S. Gefle
    Russian Physics Journal, 2017, 60 : 115 - 121
  • [35] Micro-/mesoporous carbon nanofibers embedded with ordered carbon for flexible supercapacitors
    Li, Yanjiang
    Ou-Yang, Wei
    Xu, Xingtao
    Wang, Miao
    Hou, Shujin
    Lu, Ting
    Yao, Yefeng
    Pan, Likun
    ELECTROCHIMICA ACTA, 2018, 271 : 591 - 598
  • [36] Composites of Polylactide with Carbon Nanofillers: Synthesis, Structure, Properties
    Rogovina, S. Z.
    Kuznetsova, O. P.
    Gasymov, M. M.
    Lomakin, S. M.
    Shevchenko, V. G.
    Berlin, A. A.
    POLYMER SCIENCE SERIES C, 2024, 66 (01) : 68 - 80
  • [37] Electrical Transport Properties of Carbon Nanotube/Polyester Polymer Composites
    Samir, Z.
    Boukheir, S.
    Belhimria, R.
    Achour, M. E.
    Costa, L. C.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2019, 32 (02) : 185 - 190
  • [38] Electrical properties of carbon nanofiber reinforced multiscale polymer composites
    Poveda, Ronald L.
    Gupta, Nikhil
    MATERIALS & DESIGN, 2014, 56 : 416 - 422
  • [39] Tailoring the Electrical Properties of Carbon Nanotube-Polymer Composites
    Huang, Yan Y.
    Terentjev, Eugene M.
    ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (23) : 4062 - 4068
  • [40] Electrical properties of carbon black-filled polymer composites
    Zois, H
    Apekis, L
    Omastova, M
    MACROMOLECULAR SYMPOSIA, 2001, 170 : 249 - 256