Real-Time Face Detection Using Artificial Neural Networks

被引:3
|
作者
Aulestia, Pablo S. [1 ]
Talahua, Jonathan S. [1 ]
Andaluz, Victor H. [1 ]
Benalcazar, Marco E. [2 ]
机构
[1] Univ Fuerzas Armadas ESPE, Sangolqui, Ecuador
[2] Escuela Politec Nacl, Dept Informat & Ciencias Comp, Quito, Ecuador
关键词
Real-time face detection; Histograms of oriented gradients; Feed-forward neural networks; FEEDFORWARD NETWORKS;
D O I
10.1007/978-3-319-68612-7_67
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a model for face detection that works in both real-time and unstructured environments. For feature extraction, we applied the HOG (Histograms of Oriented Gradients) technique in a canonical window. For classification, we used a feed-forward neural network. We tested the performance of the proposed model at detecting faces in sequences of color images. For this task, we created a database containing color image patches of faces and background to train the neural network and color images of 320 x 240 to test the model. The database is available at http://electronica-el.espe.edu.ec/actividad-estudiantil/face-database/. To achieve real-time, we split the model into several modules that run in parallel. The proposed model exhibited an accuracy of 91.4% and demonstrated robustness to changes in illumination, pose and occlusion. For the tests, we used a 2-core-2.5 GHz PC with 6 GB of RAM memory, where input frames of 320 x 240 pixels were processed in an average time of 81 ms.
引用
收藏
页码:590 / 599
页数:10
相关论文
共 50 条
  • [21] Real-time Gait Pattern Classification Using Artificial Neural Networks
    Robles, Diego
    Benchekroun, Mouna
    Lira, Andrea
    Taramasco, Carla
    Zalc, Vincent
    Irazzoky, Igor
    Istrate, Dan
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR LIVING ENVIRONMENT (IEEE METROLIVEN 2022), 2022, : 76 - 80
  • [22] Real-Time Evaluation of Compaction Quality by Using Artificial Neural Networks
    Cao, Weidong
    Liu, Shutang
    Gao, Xuechi
    Ren, Fei
    Liu, Peng
    Wu, Qilun
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2020, 2020
  • [23] DRESS REHEARSAL FOR REAL-TIME ARTIFICIAL NEURAL NETWORKS
    CHESTER, M
    ELECTRONIC PRODUCTS MAGAZINE, 1987, 30 (02): : 19 - +
  • [24] Real-time load forecasting by artificial neural networks
    Sharif, SS
    Taylor, JH
    2000 IEEE POWER ENGINEERING SOCIETY SUMMER MEETING, CONFERENCE PROCEEDINGS, VOLS 1-4, 2000, : 496 - 501
  • [25] REAL-TIME TRACK IDENTIFICATION WITH ARTIFICIAL NEURAL NETWORKS
    ATHANASIU, G
    PAVLOPOULOS, P
    VLACHOS, S
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1993, 324 (1-2): : 320 - 329
  • [26] Real-time detection of gravitational waves from binary neutron stars using artificial neural networks
    Krastev, Plamen G.
    PHYSICS LETTERS B, 2020, 803
  • [27] Real-time lidar feature detection using convolutional neural networks
    McGill, Matthew J.
    Roberson, Stephen D.
    Ziegler, William
    Smith, Ron
    Yorks, John E.
    LASER RADAR TECHNOLOGY AND APPLICATIONS XXIX, 2024, 13049
  • [28] A Real-time system for the automatic identification of motorcycle - using Artificial Neural Networks
    Pillai, B. Raveendran
    Kumar, Sukesh A.
    ICCN: 2008 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING, 2008, : 445 - +
  • [29] An approach to implement electricity metering in real-time using artificial neural networks
    Dondo, MC
    El-Hawary, ME
    IEEE TRANSACTIONS ON POWER DELIVERY, 2003, 18 (02) : 383 - 386
  • [30] Real-time gastric polyp detection using convolutional neural networks
    Zhang, Xu
    Chen, Fei
    Yu, Tao
    An, Jiye
    Huang, Zhengxing
    Liu, Jiquan
    Hu, Weiling
    Wang, Liangjing
    Duan, Huilong
    Si, Jianmin
    PLOS ONE, 2019, 14 (03):