An upper bound for the condition number of a matrix in spectral norm

被引:30
|
作者
Piazza, G [1 ]
Politi, T [1 ]
机构
[1] Politecn Bari, Dipartimento Interuniv Matemat, I-70125 Bari, Italy
关键词
condition number; singular values;
D O I
10.1016/S0377-0427(02)00396-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we generalize an upper bound given in Guggenheimer et al. (College Math. J. 26(1) (1995) 2) for the condition number of a matrix as a function of the determinant, the Frobenius norm and of k singular values. If no singular value is known it is possible to derive an upper bound for the condition number applying lower and upper bounds for the product of a subset of singular values. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:141 / 144
页数:4
相关论文
共 50 条
  • [31] The upper bound estimation on the spectral norm of r-circulant matrices with the Fibonacci and Lucas numbers
    Chengyuan He
    Jiangming Ma
    Kunpeng Zhang
    Zhenghua Wang
    Journal of Inequalities and Applications, 2015
  • [32] A fast algorithm for the computation of an upper bound on the μ-norm
    Lawrence, CT
    Tits, AL
    Van Dooren, P
    AUTOMATICA, 2000, 36 (03) : 449 - 456
  • [33] On the Upper Bound to the Spectral Radius of Iterative Matrix of a Generalized Alternating Iterative Method
    Wang, Guangbin
    Wu, Xiaoqian
    Tan, Fuping
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 246 - 249
  • [34] On the spectral norm of a random Toeplitz matrix
    Meckes, Mark W.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 315 - 325
  • [35] On the spectral norm of the matrix with integer sequences
    Solak, Suleyman
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 919 - 921
  • [36] Estimates of the spectral condition number
    Lam, James
    Li, Zhao
    Wei, Yimin
    Feng, Jun-e
    Chung, Kwok Wai
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (03): : 249 - 260
  • [37] Matrix CFAR Detector Based on Matrix Spectral Norm
    Zhao W.-J.
    Jin M.-L.
    Liu W.-L.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47 (09): : 1951 - 1956
  • [38] A BOUND FOR SPECTRAL RADIUS OF A MATRIX
    SLOSS, JM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1970, 30 (03) : 658 - &
  • [39] ESTIMATE FOR THE CONDITION NUMBER OF A MATRIX
    CLINE, AK
    MOLER, CB
    STEWART, GW
    WILKINSON, JH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (02) : 368 - 375
  • [40] On the condition number of a Kreiss matrix
    Charpentier, Stephane
    Fouchet, Karine
    Zarouf, Rachid
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (04): : 1376 - 1390