Decentralized Automatic Modulation Classification Method Based on Lightweight Neural Network

被引:2
|
作者
Dong, Biao [1 ]
Xu, Guozhen [2 ]
Fu, Xue [1 ]
Dong, Heng [1 ]
Gui, Guan [1 ]
Gacanin, Haris [3 ]
Adachi, Fumiyuki [4 ]
机构
[1] NJUPT, Coll Telecommun & Informat Engn, Nanjing, Peoples R China
[2] Natl Univ Def Technol, Coll Elect Countermeasure, Hefei, Peoples R China
[3] Rhein Westfal TH Aachen, Fac Elect Engn & Informat Technol, Aachen, Germany
[4] Tohoku Univ, Res Org Elect Commun, Sendai, Miyagi, Japan
关键词
Automatic modulation classification; decentralized learning; lightweight neural network; IDENTIFICATION;
D O I
10.1109/PIMRC54779.2022.9978060
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the computing capability and memory limitations, it is difficult to apply the traditional deep learning (DL) models to the edge devices (EDs) for realizing automatic modulation classification (AMC). In this paper, a lightweight neural network for decentralized learning-based automatic modulation classification (DecentAMC) method is proposed. Specifically, group convolutional neural network (GCNN) is designed by replacing the standard convolution layer with the group convolution layer, replacing the flatten layer with the global average pooling (GAP) layer and removing part of fully connected layers. DecentAMC method is achieved by the cooperation in which multiple EDs update and upload the model weight to a central device (CD) for model aggregation to avoid the data privacy disclosure. Experimental results show that the proposed GCNN-based DecentAMC method can improve training efficiency to about 4 times and 57 times than that of GCNN-based centralized AMC (CentAMC) and CNN-based DecentAMC respectively. GCNN-based DecentAMC method can effectively reduce the communication cost and save storage of EDs when compared with CNN-based DecentAMC. Meanwhile, the time complexity and the space complexity of GCNN is significantly decreased when compared with CNN and SCNN, which is suitable to be deployed in EDs.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 50 条
  • [21] Automatic modulation classification based on joint feature map and convolutional neural network
    Wang, Feng
    Yang, Chenlu
    Huang, Shanshan
    Wang, Hao
    IET RADAR SONAR AND NAVIGATION, 2019, 13 (06): : 998 - 1003
  • [22] Artificial Neural Network Based Automatic Modulation Classification System Applied to FPGA
    De Castro, Adenilson F.
    Milleo, Ronny S. R.
    Lolis, Luis H. A.
    Mariano, Andre A.
    34TH SBC/SBMICRO/IEEE/ACM SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN (SBCCI 2021), 2021,
  • [23] Automatic Modulation Classification Based on CNN-Transformer Graph Neural Network
    Wang, Dong
    Lin, Meiyan
    Zhang, Xiaoxu
    Huang, Yonghui
    Zhu, Yan
    SENSORS, 2023, 23 (16)
  • [24] Multitask-Learning-Based Deep Neural Network for Automatic Modulation Classification
    Chang, Shuo
    Huang, Sai
    Zhang, Ruiyun
    Feng, Zhiyong
    Liu, Liang
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (03) : 2192 - 2206
  • [25] Features Fusion based Automatic Modulation Classification Using Convolutional Neural Network
    Lin, Chunsheng
    Huang, Juanjuan
    Huang, Sai
    Yao, Yuanyuan
    Guo, Xin
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 1099 - 1104
  • [26] Fast and Lightweight Automatic Modulation Recognition using Spiking Neural Network
    Lin, Canghai
    Zhang, ZhiJiao
    Wang, Lei
    Wang, Yao
    Zhao, Jingyue
    Yang, Zhijie
    Xiao, Xun
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [27] A Hierarchical Classification Head Based Convolutional Gated Deep Neural Network for Automatic Modulation Classification
    Chang, Shuo
    Zhang, Ruiyun
    Ji, Kejia
    Huang, Sai
    Feng, Zhiyong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (10) : 8713 - 8728
  • [28] A Lightweight Method for Vehicle Classification Based on Improved Binarized Convolutional Neural Network
    Zhang, Bangyuan
    Zeng, Kai
    ELECTRONICS, 2022, 11 (12)
  • [29] Automatic Classification Method for Software Vulnerability Based on Deep Neural Network
    Huang, Guoyan
    Li, Yazhou
    Wang, Qian
    Ren, Jiadong
    Cheng, Yongqiang
    Zhao, Xiaolin
    IEEE ACCESS, 2019, 7 : 28291 - 28298
  • [30] A Novel Automatic Classification Method for Flash Based on BP Neural Network
    Xu, Zhenguo
    Meng, Xiangzeng
    Wang, Jiwei
    Xing, Shuning
    2015 8TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2015, : 285 - 289