From molecular models to continuum mechanics

被引:170
|
作者
Blanc, X
Le Bris, C
Lions, PL
机构
[1] Ecole Natl Ponts & Chaussees, F-77455 Marne La Vallee 2, France
[2] Univ Paris 09, F-75775 Paris 16, France
关键词
D O I
10.1007/s00205-002-0218-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present here a limiting process allowing us to write some continuum mechanics models as a natural asymptotic of molecular models. The approach is based on the hypothesis that the macroscopic displacement is equal to the microscopic one. We carry out the corresponding calculations in the case of two-body energies, including higher order terms, and also in the case of Thomas-Fermi type models.
引用
收藏
页码:341 / 381
页数:41
相关论文
共 50 条
  • [21] Buckling of microtubules: An insight by molecular and continuum mechanics
    Zhang, Jin
    Meguid, S. A.
    APPLIED PHYSICS LETTERS, 2014, 105 (17)
  • [22] Foreword on the special issue: from discrete particles to continuum models of granular mechanics
    Ken Kamrin
    Computational Particle Mechanics, 2017, 4 : 371 - 371
  • [23] Foreword on the special issue: from discrete particles to continuum models of granular mechanics
    Kamrin, Ken
    COMPUTATIONAL PARTICLE MECHANICS, 2017, 4 (04) : 371 - 371
  • [24] From mesoscopic models to continuum mechanics: Newtonian and non-newtonian fluids
    Huilgol, R. R.
    Kefayati, G. H. R.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2016, 233 : 146 - 154
  • [25] Separation of scales in fracture mechanics:: From molecular to continuum theory via Γ convergence
    Gelli, MS
    Royer-Carfagni, GF
    JOURNAL OF ENGINEERING MECHANICS, 2004, 130 (02) : 204 - 215
  • [26] INVERSE SPECTRAL PROBLEMS AND MATHEMATICAL MODELS OF CONTINUUM MECHANICS
    Zakirova, G. A.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2019, 12 (02): : 5 - 24
  • [27] PHYSICAL RELIABILITY OF MATHEMATICAL-MODELS IN CONTINUUM MECHANICS
    PAGLIETTI, A
    LETTERE AL NUOVO CIMENTO, 1976, 16 (07): : 201 - 204
  • [28] Kinetic models for solving continuum mechanics problems on supercomputers
    Chetverushkin B.N.
    Mathematical Models and Computer Simulations, 2015, 7 (6) : 531 - 539
  • [29] Linking atomistic and continuum mechanics using multiscale models
    Chandra, N
    Namilae, S
    Srinivasan, A
    MATERIALS PROCESSING AND DESIGN: MODELING, SIMULATION AND APPLICATIONS, PTS 1 AND 2, 2004, 712 : 1571 - 1576
  • [30] From fractal media to continuum mechanics
    Ostoja-Starzewski, Martin
    Li, Jun
    Joumaa, Hady
    Demmie, Paul N.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (05): : 373 - 401