Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems

被引:47
|
作者
Wu Haijun [1 ]
Chen Zhiming [1 ]
机构
[1] Chinese Acad Sci, Inst Computat Math, Beijing 100080, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2006年 / 49卷 / 10期
基金
中国国家自然科学基金;
关键词
multigrid V-cycle algorithm; adaptive finite element meshes; local relaxation; Scott-Zhang interpolation;
D O I
10.1007/s11425-006-2005-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the uniform convergence of the standard multigrid V-cycle algorithm with the Gauss-Seidel relaxation performed only on the new nodes and their "immediate" neighbors for discrete elliptic problems on the adaptively refined finite element meshes using the newest vertex bisection algorithm. The proof depends on sharp estimates on the relationship of local mesh sizes and a new stability estimate for the space decomposition based on the Scott-Zhang interpolation operator. Extensive numerical results are reported, which confirm the theoretical analysis.
引用
收藏
页码:1405 / 1429
页数:25
相关论文
共 50 条
  • [31] Convergence analysis of HSS-multigrid methods for second-order nonselfadjoint elliptic problems
    Shishun Li
    Zhengda Huang
    BIT Numerical Mathematics, 2013, 53 : 987 - 1012
  • [32] Convergence analysis of HSS-multigrid methods for second-order nonselfadjoint elliptic problems
    Li, Shishun
    Huang, Zhengda
    BIT NUMERICAL MATHEMATICS, 2013, 53 (04) : 987 - 1012
  • [33] MIXED VIRTUAL ELEMENT METHODS FOR GENERAL SECOND ORDER ELLIPTIC PROBLEMS ON POLYGONAL MESHES
    da Veiga, Lourenco Beirao
    Brezzi, Franco
    Marini, Luisa Donatella
    Russo, Alessandro
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03): : 727 - 747
  • [34] A second order isoparametric finite element method for elliptic interface problems
    Fang Xu-fa
    Han Dan-fu
    Hu Xian-liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (01) : 57 - 74
  • [35] A second order isoparametric finite element method for elliptic interface problems
    FANG Xu-fa
    HAN Dan-fu
    HU Xian-liang
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2013, 28 (01) : 57 - 74
  • [36] Method of nonconforming mixed finite element for second order elliptic problems
    Luo, ZD
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (05) : 449 - 456
  • [37] Virtual Element Method for general second-order elliptic problems on polygonal meshes
    da Veiga, L. Beirao
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (04): : 729 - 750
  • [38] Mortar finite volume element approximations of second order elliptic problems
    Ewing, R.
    Lazarov, R.
    Lin, T.
    Lin, Y.
    East-West Journal of Numerical Mathematics, 2000, 8 (02): : 93 - 110
  • [39] A second order isoparametric finite element method for elliptic interface problems
    FANG Xu-fa
    HAN Dan-fu
    HU Xian-liang
    Applied Mathematics:A Journal of Chinese Universities, 2013, (01) : 57 - 74
  • [40] A second order isoparametric finite element method for elliptic interface problems
    Xu-fa Fang
    Dan-fu Han
    Xian-liang Hu
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 57 - 74