Thermal activation of excitons in asymmetric InAs dots-in-a-well InxGa1-xAs/GaAs structures

被引:85
|
作者
Torchynska, T. V. [1 ]
Espinola, J. L. Casas
Borkovska, L. V.
Ostapenko, S.
Dybiec, M.
Polupan, O.
Korsunska, N. O.
Stintz, A.
Eliseev, P. G.
Malloy, K. J.
机构
[1] Inst Politecn Nacl, UPALM, SEPI, Mexico City 07738, DF, Mexico
[2] Univ S Florida, Tampa, FL 33620 USA
[3] NASU, V Lashkarev Inst Semicond Phys, UA-03028 Kiev, Ukraine
[4] Univ New Mexico, CHTM, Albuquerque, NM 87106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2427105
中图分类号
O59 [应用物理学];
学科分类号
摘要
Photoluminescence, its temperature dependence, and photoluminescence excitation spectra of InAs quantum dots embedded in asymmetric InxGa1-xAs/GaAs quantum wells [dots in a well (DWELL)] have been investigated as a function of the indium content x (x=0.10-0.25) in the capping InxGa1-xAs layer. The asymmetric DWELL structures were created with the aim to investigate the influence of different barrier values at the quantum dot (QD)/quantum well interface on the photoluminescence thermal quenching process. The set of rate equations for the two stage model for the capture and thermal escape of excitons in QDs are solved to analyze the nature of thermal activation energies for the QD photoluminescence quenching process. The two stage model for exciton thermal activation was confirmed experimentally in the investigated QD structures as well. The localization of nonradiative defects in InAs/InGaAs DWELL structures is discussed on the base of comparison of theoretical and numerically calculated (fitting) results. (c) 2007 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Effect of strain on multisubband electron transport in GaAs/InxGa1-xAs coupled quantum well structures
    Subudhi, P. K.
    Palo, S.
    Sahu, T.
    SUPERLATTICES AND MICROSTRUCTURES, 2012, 51 (03) : 430 - 442
  • [42] Competition effects in the carrier capture into InxGa1-xAs/GaAs double-quantum-well structures
    Borri, P
    Gurioli, M
    Colocci, M
    Martelli, F
    Capizzi, M
    PHYSICAL REVIEW B, 1997, 56 (15): : 9228 - 9230
  • [43] Ferromagnetism and magnetotransport in GaAs structures with InAs quantum dot layer or InxGa1-xAs quantum well delta-doped with Mn and C
    Kulbachinskii, V. A.
    Gurin, P. V.
    Vikhrova, O. V.
    Danilov, Yu. A.
    Zvonkov, B. N.
    PROCEEDINGS OF THE 17TH INTERNATIONAL VACUUM CONGRESS/13TH INTERNATIONAL CONFERENCE ON SURFACE SCIENCE/INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2008, 100
  • [44] Transport and magnetotransport properties of Mn-doped InxGa1-xAs/GaAs quantum well structures
    Kulbachinskii, V. A.
    Lunin, R. A.
    Gurin, P. V.
    Aronzon, B. A.
    Davydov, A. B.
    Rylkov, V. V.
    Danilov, Yu A.
    Vikhrova, O. V.
    Zvonkov, B. N.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 300 (01) : E16 - E19
  • [45] INTERFACE DISLOCATION-STRUCTURES IN INXGA1-XAS/GAAS MISMATCHED EPITAXY
    BREEN, KR
    UPPAL, PN
    AHEARN, JS
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1989, 7 (04): : 758 - 763
  • [46] Disorder effects in GaAs/InxGa1-xAs/GaAs quantum well delta doped with Mn
    Aronzon, B.
    Lagutin, A.
    Rylkov, V.
    Pankov, M.
    Lashkul, A.
    Laiho, R.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 5, NO 3, 2008, 5 (03): : 814 - +
  • [47] Structural anisotropy and optical properties of InxGa1-xAs quantum dots on GaAs(001)
    Lin, F
    Wu, J
    Jiang, WH
    Cui, H
    Wang, ZG
    JOURNAL OF CRYSTAL GROWTH, 2001, 223 (1-2) : 55 - 60
  • [48] Modeling the 3D In profile of InxGa1-xAs/GaAs quantum dots
    Tanaka, R. Y.
    Abe, N. M.
    da Silva, E. C. F.
    Quivy, A. A.
    Passaro, A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (21)
  • [49] Carrier capture and escape in InxGa1-xAs/GaAs quantum dots:: Effects of intermixing
    Marcinkevicius, S
    Leon, R
    PHYSICAL REVIEW B, 1999, 59 (07): : 4630 - 4633
  • [50] Fabrication of GaAs, InxGa1-xAs and Their ZnSe Core/Shell Colloidal Quantum Dots
    Park, Joong Pill
    Lee, Jae-Joon
    Kim, Sang-Wook
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (51) : 16568 - 16571