Arbitrary Decay of Energy for a Viscoelastic Problem with Balakrishnan-Taylor Damping

被引:12
|
作者
Park, Sun-Hye [1 ]
机构
[1] Pusan Natl Univ, Ctr Educ Accreditat, Busan 609735, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2016年 / 20卷 / 01期
基金
新加坡国家研究基金会;
关键词
Arbitrary decay rate; Balakrishnan-Taylor damping; Memory; EQUATIONS; EXISTENCE;
D O I
10.11650/tjm.20.2016.6079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider a viscoelastic problem with Balakrishnan-Taylor damping u(tt) - (a + b parallel to del u parallel to(2) + sigma(del u, del u(t))) Delta u + integral(t)(0) g(t - s)Delta u(s) ds = 0 with Dirichlet boundary condition. We establish a decay result of the energy of solutions for the problem without imposing the usual relation between the relaxation function g and its derivative. This result generalizes earlier ones to an arbitrary rate of decay, which is not necessarily of exponential or polynomial decay.
引用
收藏
页码:129 / 141
页数:13
相关论文
共 50 条
  • [31] GENERAL DECAY FOR A VISCOELASTIC KIRCHHOFF EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING, DYNAMIC BOUNDARY CONDITION SAND A TIME-VARYING DELAY TERM
    Liu, Wenjun
    Zhu, Biqing
    Li, Gang
    Wang, Danhua
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2017, 6 (02): : 239 - 260
  • [32] Stabilization for the Wave Equation with Variable Coefficients and Balakrishnan-Taylor Damping
    Ha, Tae Gab
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (04): : 807 - 817
  • [33] General decay of solutions for Kirchhoff type containing Balakrishnan-Taylor damping with a delay and acoustic boundary conditions
    Lee, Mi Jin
    Kim, Daewook
    Park, Jong Yeoul
    BOUNDARY VALUE PROBLEMS, 2016,
  • [34] On the viscoelastic equation with Balakrishnan-Taylor damping and nonlinear boundary/interior sources with variable-exponent nonlinearities
    Rahmoune, Abita
    Benabderrahmane, Benyattou
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (04): : 599 - 639
  • [35] General decay of solutions for Kirchhoff type containing Balakrishnan-Taylor damping with a delay and acoustic boundary conditions
    Mi Jin Lee
    Daewook Kim
    Jong Yeoul Park
    Boundary Value Problems, 2016
  • [36] General decay for the viscoelastic wave equation for Kirchhoff-type containing Balakrishnan-Taylor damping, nonlinear damping and logarithmic source term under acoustic boundary conditions
    Mi Jin Lee
    Jum-Ran Kang
    Boundary Value Problems, 2025 (1)
  • [37] Stabilization for wave equation of variable coefficients with Balakrishnan-Taylor damping and source term
    Hao, Jianghao
    Hou, Yaxin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (09) : 2235 - 2245
  • [38] General decay result of solutions for viscoelastic wave equation with Balakrishnan–Taylor damping and a delay term
    Billel Gheraibia
    Nouri Boumaza
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [39] Asymptotic expansion of solutions for the Robin-Dirichlet problem of Kirchhoff-Carrier type with Balakrishnan-Taylor damping
    Nhan, Nguyen Huu
    Nam, Bui Duc
    Ngoc, Le Thi Phuong
    Long, Nguyen Thanh
    FILOMAT, 2023, 37 (08) : 2321 - 2346
  • [40] Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms
    Choucha, Abdelbaki
    Boulaaras, Salah
    Alharbi, Asma
    AIMS MATHEMATICS, 2022, 7 (03): : 4517 - 4539