Finite difference diagonalization to simulate nuclear magnetic resonance diffusion experiments in porous media

被引:2
|
作者
Grombacher, Denys [1 ]
Nordin, Matias [1 ]
机构
[1] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA
关键词
diffusion; finite difference; porous media; Laplace operator; NARROW-PULSE APPROXIMATION; RESTRICTED DIFFUSION; FIELD GRADIENT; SPIN-ECHO; NMR DIFFUSION; LAPLACIAN EIGENFUNCTIONS; BLOCH EQUATIONS; MOLECULES; PROPAGATORS; RELAXATION;
D O I
10.1002/cmr.a.21349
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A finite difference approach for computing Laplacian eigenvalues and eigenvectors in discrete porous media is derived and used to approximately solve the Bloch-Torrey equations. Neumann, Dirichlet, and Robin boundary conditions are considered and applications to simulate nuclear magnetic resonance diffusion experiments are shown. The method is illustrated with MATLAB examples and computational tests in one and two dimensions and the extension to three dimensions is outlined. (c) 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part A 44A: 160-180, 2015.
引用
收藏
页码:160 / 180
页数:21
相关论文
共 50 条
  • [41] Probing Structural Compositions of Porous Media with Two-dimensional Nuclear Magnetic Resonance
    Liu, Huabing
    Xiao, Lizhi
    Yu, Huijun
    Li, Xin
    Guo, Baoxin
    Zhang, Zongfu
    Zong, Fangrong
    Anferov, Vladimir
    Anferova, Sofia
    APPLIED MAGNETIC RESONANCE, 2013, 44 (05) : 543 - 552
  • [42] NUCLEAR MAGNETIC RESONANCE EXPERIMENTS ON AMMONIUM HALIDES .2. HALOGEN NUCLEAR MAGNETIC RESONANCE
    ITOH, J
    YAMAGATA, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1962, 17 (03) : 481 - &
  • [43] Diffusion and magnetic relaxation in model porous media
    Bhattacharya, A.
    Mahanti, S. D.
    Chakrabarti, A.
    Physical Review B: Condensed Matter, 53 (17):
  • [44] Diffusion and magnetic relaxation in model porous media
    Bhattacharya, A
    Mahanti, SD
    Chakrabarti, A
    PHYSICAL REVIEW B, 1996, 53 (17): : 11495 - 11503
  • [45] RADIATION INSTABILITY IN NUCLEAR MAGNETIC RESONANCE EXPERIMENTS
    VLADIMIRSKII, KV
    SOVIET PHYSICS JETP-USSR, 1958, 6 (02): : 415 - 416
  • [46] NUMERICAL APPROACH TO SIMULATE DIFFUSION MODEL OF A FLUID-FLOW IN A POROUS MEDIA
    Aghdam, Yones Esmaeelzade
    Farnam, Behnaz
    Jafari, Hosein
    THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S255 - S261
  • [47] MAGNETIC-RESONANCE IN POROUS-MEDIA
    STRANGE, JH
    MAGNETIC RESONANCE IMAGING, 1994, 12 (02) : 161 - 162
  • [48] Magnetic resonance in porous media: Recent progress
    Song, Yi-Qiao
    Cho, H.
    Hopper, Tim
    Pomerantz, Andrew E.
    Sun, Phillip Zhe
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (05):
  • [49] Magnetic Resonance of Porous Media (MRPM): A perspective
    Song, Yi-Qiao
    JOURNAL OF MAGNETIC RESONANCE, 2013, 229 : 12 - 24
  • [50] Focus on the physics of magnetic resonance on porous media
    Song, Yi-Qiao
    NEW JOURNAL OF PHYSICS, 2012, 14